K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2021

B A C D E F

P/s: Hình vẽ chỉ mang tính chất minh họa

Từ D kẻ các đường song song với AC,AB cắt AB,AC lần lượt tại E,F

=> Tứ giác AEDF là hình bình hành

Lại có AD là phân giác góc EAF => Tứ giác AEDF là hình thoi

=> AE = ED = DF = FA

Xét trong tam giác AED cân tại E có góc EAD = 60 độ

=> Tam giác AED đều => AD = DE = DF

Áp dụng định lý Thales ta có: 

DE // AC => \(\frac{DE}{AC}=\frac{BD}{BC}\)      ;  DF // AB => \(\frac{DF}{AB}=\frac{DC}{BC}\)

Cộng vế với vế 2 đẳng trên ta được: \(\frac{DE}{AC}+\frac{DF}{AB}=\frac{BD}{BC}+\frac{DC}{BC}\)

\(\Leftrightarrow\frac{AD}{AC}+\frac{AD}{AB}=1\Rightarrow\frac{1}{AB}+\frac{1}{AC}=\frac{1}{AD}\)

=> đpcm

https://olm.vn/hoi-dap/detail/273894454691.html

31 tháng 8 2018

A B C D H M c a d b

Đặt AB=b, AC=a,AD=d vậy ta CM : 1/c+1/b=\(\sqrt{2}\)/d

Từ D hạ DH vuông AC tại H và DM vuông AB tại M, dễ dàng CM được AHDM là hình vuông. => HD=DM=d.sin45 = \(\frac{d}{\sqrt{2}}\) 

Ta có S(ABC) = S(ACD) + S(ABD) 

<=> b.c/2 = HD.b/2 + DM.c/2  <=> bc = \(\frac{bd+cd}{\sqrt{2}}\)<=> \(\sqrt{2}\)bc = bd + cd

Chia 2 vế cho b.c.d ta có pt cần CM

12 tháng 12 2020

\(\frac{1}{b}+\frac{1}{c}=\frac{1}{d}\Leftrightarrow\frac{b+c}{bc}=\frac{1}{d}\Leftrightarrow d=\frac{bc}{b+c}\)

Ta có

\(HD\perp AB;AC\perp AB\) => HD//AC \(\Rightarrow\frac{BD}{BC}=\frac{HD}{AC}=\frac{d}{b}\Rightarrow d=\frac{b.BD}{BC}\) (*)

Xét tg ABC có AD là phân giác của \(\widehat{A}\) nên

\(\frac{BD}{AB}=\frac{CD}{AC}\) (Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn tỉ lệ với hai cạnh kề của hai đoạn ấy)

\(\Rightarrow\frac{BD}{c}=\frac{CD}{b}=\frac{BD+CD}{b+c}=\frac{BC}{b+c}\Rightarrow BC=\frac{BD.\left(b+c\right)}{c}\) Thay vào (*)

\(d=\frac{b.BD}{\frac{BD.\left(b+c\right)}{c}}=\frac{b.BD.c}{BD.\left(b+c\right)}=\frac{bc}{b+c}\Leftrightarrow\frac{1}{b}+\frac{1}{c}=\frac{1}{d}\left(dpcm\right)\)



 

6 tháng 3 2020

A B F E D M C

a,Ta có \(FM//AD\left(gt\right)\Rightarrow\widehat{EFA}=\widehat{DAB}\left(đvị\right);\widehat{FEA}=\widehat{DAE}\left(slt\right)\)

mà \(\widehat{DAB}=\widehat{DAE}\Rightarrow\widehat{EFA}=\widehat{FEA}\)

\(\Rightarrow\Delta AFE\)cân tại A

xét \(\Delta BMF\left(AD//MF\right)\)Áp dụng định lí ta-let ta có 

\(\frac{BF}{AF}=\frac{BM}{DM}\)

b, \(\Delta ABC\)có AD là đường phân giác 

\(\Rightarrow\frac{BD}{DC}=\frac{AB}{AC}\Rightarrow\frac{BD}{AB}=\frac{DC}{AC}^{^{\left(1\right)}}\)

Ta có AD//EM => \(\widehat{EMD}=\widehat{ADB};\widehat{ADM}=\widehat{EMC}\left(đvị\right)\)

Xét \(\Delta ECM\)và \(\Delta ACD\)

\(\widehat{C}:chung \)

\(\widehat{EMC}=\widehat{ADC}\left(cmt\right)\)

\(\Rightarrow\Delta ECM\)VÀ \(\Delta ACD\)đồng dạng (g.g)

\(\Rightarrow\frac{CM}{CE}=\frac{CD}{CA}^{^{\left(2\right)}}\)

Chứng minh tương tự ta có 

\(\Delta ABD\)và \(\Delta FAM\)đồng dạng (g.g)

\(\Rightarrow\frac{DB}{AB}=\frac{MB}{BF}^{^{\left(3\right)}}\)

Từ (1)(2)(3) \(\Rightarrow\frac{CM}{CE}=\frac{MB}{BF}\)  mà CM=MB (gt) nên CE=BF

p/s: câu c để mình nghĩ tiếp