Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Có \(b^2+c^2-a^2=cosA.2bc\)
\(S=\dfrac{1}{2}bc.sinA\)\(\Rightarrow4S=2bc.sinA\)
\(\Rightarrow\dfrac{b^2+c^2-a^2}{4S}=\dfrac{cosA.2bc}{2bc.sinA}=cotA\) (dpcm)
b) CM tương tự câu a \(\Rightarrow\dfrac{a^2+c^2-b^2}{4S}=\dfrac{cosB.2ac}{2ac.sinB}=cotB\); \(\dfrac{a^2+b^2-c^2}{4S}=\dfrac{cosC.2ab}{2ab.sinC}=cotC\)
Cộng vế với vế \(\Rightarrow cotA+cotB+cotC=\dfrac{b^2+c^2-a^2}{4S}+\dfrac{a^2+c^2-b^2}{4S}+\dfrac{a^2+b^2-c^2}{4S}\)\(=\dfrac{a^2+b^2+c^2}{4S}\) (dpcm)
c) Gọi ma;mb;mc là độ dài các đường trung tuyến kẻ từ đỉnh A;B;C của tam giác ABC
Có \(GA^2+GB^2+GC^2=\dfrac{4}{9}\left(m_a^2+m_b^2+m_b^2\right)\)\(=\dfrac{4}{9}\left[\dfrac{2\left(b^2+c^2\right)-a^2}{4}+\dfrac{2\left(a^2+c^2\right)-b^2}{4}+\dfrac{2\left(b^2+c^2\right)-a^2}{4}\right]\)
\(=\dfrac{4}{9}.\dfrac{3\left(a^2+b^2+c^2\right)}{4}=\dfrac{a^2+b^2+c^2}{3}\) (đpcm)
d) Có \(a\left(b.cosC-c.cosB\right)=ab.cosC-ac.cosB\)
\(=\dfrac{a^2+b^2-c^2}{2}-\dfrac{a^2+c^2-b^2}{2}\)
\(=b^2-c^2\) (dpcm)
Cho tam giác ABC có BC=a, CA=b, BA=c và diện tích là S. Biết \(S=b^2-\left(a-c\right)^2\). Tính tanB
Ta có:
\(S=b^2-\left(a-c\right)^2\)
\(\Leftrightarrow\dfrac{1}{2}ac\sin B=a^2+c^2-2ac\cos B-a^2-c^2+2ac\)
\(\Leftrightarrow\dfrac{1}{2}ac\sin B=2ac\left(1-c\text{os}B\right)\)
\(\Leftrightarrow\sin B=4\left(1-c\text{os}B\right)\Leftrightarrow c\text{os}B=1-\dfrac{1}{4}sinB\left(1\right)\)
Mặt \(\ne:sin^2B+c\text{os}^2B=1\)
\(\Leftrightarrow sin^2B+\left(1-\dfrac{1}{4}sinB\right)^2=1\)
\(\Leftrightarrow\dfrac{17}{16}sin^2B-\dfrac{1}{2}sinB=0\)
\(\Leftrightarrow sinB=\dfrac{8}{17}\left(sinB>0\right)\)
Kết hợp với (1) ta đc: \(c\text{os}B=\dfrac{15}{17}\Rightarrow tanB=\dfrac{8}{15}\)
Diện tích tam giác ABC là: S = 1 2 b c . sin A ⇒ 4 S = 2 b c sin A
cot A = cos A sin A = b 2 + c 2 − a 2 2 b c s i n A = b 2 + c 2 − a 2 4 S
ĐÁP ÁN D