K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2020

Đáp án:

 bạn ơi xem và thay thế các tên điểm trên hình nhé

Giải thích các bước giải:

Ta có:ABI=BAD+ADB(góc ngoài của tam giác ABD)

Lại có:KCA=CAE+AEC(góc ngoài của tam giác ACE)

Mà góc BAD cũng chính là góc CAE,ADB=AEC=90độ

=>BAD+ADB=CAE+AEC

Suy ra:ABI=KCA

Xét tam giác ABI và tam giác KCA:

Ta có:AB=KC(gt)

ABI=KCA(cmt)

BI=CA(gt)

=>tam giác ABI=tam giác KCA(c-g-c)

=>AI=KA(2 cạnh tương ứng)

Tam giác AIK có:AI=KA(cmt)

=>tam giác AIK cân tại A.

Vậy ta chọn:D.tam giác cân.

Tự vẽ hình nha

Ta có : 

\(\widehat{ABD}\)\(+\)\(\widehat{BAC}\)\(=90^o\)

\(\widehat{ACE}\)\(+\)\(\widehat{BAC}\) \(=90^o\)

\(\Rightarrow\widehat{ABD}\)\(=\)\(\widehat{ACE}\)

Mà \(\widehat{ABD}\)\(+\)\(\widehat{ADI}\)\(=180^o\)

      \(\widehat{ACE}\)\(+\)\(\widehat{ACK}\)\(=180^o\)

\(\Rightarrow\widehat{ADI}\)\(=\widehat{ACK}\)

Xét \(\Delta ABI\) và  \(\Delta KCA\)có :

\(AB=KC\left(gt\right)\)

\(\widehat{ADI}\)\(=\)\(\widehat{ACK}\)\(\left(cmt\right)\)

\(BI=CA\left(gt\right)\)

\(\Rightarrow\Delta ABI=\Delta KCA\left(c.g.c\right)\)

\(\Rightarrow AI=KA\) ( cặp cạnh tương ứng )

\(\Rightarrow\Delta AKI\)cân tại A     (1)

Vì \(\Delta ABI=\Delta KCA\)

\(\Rightarrow\widehat{AIB}\)\(=\)\(\widehat{KAC}\) ( cặp góc tương ứng )

Mặt khác : \(\widehat{AKC}\)\(+\)\(\widehat{BAC}\)\(+\)\(\widehat{KAC}\)\(=90^o\)

\(\Rightarrow\widehat{IAB}\)\(+\)\(\widehat{BAC}\)\(+\)\(\widehat{KAC}\)\(=90^o\)hay  \(\widehat{IAK}\)\(=90^o\) \(\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\):

\(\Rightarrow\Delta AIK\)vuông cân tại \(A\)

5 tháng 3 2016

xin lỗi em mới học lớp 5

5 tháng 3 2016

em mới học lớp 5

17 tháng 4 2016

Bạn tự vẽ hình nha!

a.

Ta có:

  • B1 + B2 = 180
  • C1 + C2 = 180 

mà B1 = C1 (tam giác ABC cân tại A)

=> B2 = C2 (1)

Xét tam giác ADB và tam giác AEC:

AB = AC (tam giác ABC cân tại A)

B2 = C2 (theo 1)

BD = CE (gt)

=> Tam giác ADB = ACE (c.g.c)

=> AD = AE (2 cạnh tương ứng)

=> Tam giác ADE

b.

Xét tam giác AHB vuông tại A và tam giác AKC vuông tại K:

 AB = AC (tam giác ABC cân tại A)

A1 = A2 (tam giác ADB = tam giác AEC)

=> Tam giác AHB = Tam giác AKC (cạnh huyền - góc nhọn)

=> BH = CK (2 cạnh tương ứng)

     AH = AK (2 cạnh tương ứng)

c.

Xét tam giác HDB vuông tại H và tam giác KEC vuông tại K:

BH = CK (theo câu b)

BD = CE (gt)

=> Tam giác HDB = Tam giác KEC (cạnh huyền - cạnh góc vuông)

Ta có: 

DBH = IBC (2 góc đối đỉnh)

KCE = ICB (2 góc đối đỉnh)

mà DBH = KCE (tam giác HDB = tam giác KEC)

=> IBC = ICB 

=> Tam giác IBC cân tại I

26 tháng 7 2018

Tam giác ABI = Tam giác KCA(c.g.c)

Suy ra: AI = AK và góc I = góc CAK

Ta có: góc I + góc IAD = 90 độ

          góc CAK + góc IAD = 90 độ

          IAK = 90 độ

Tam giác AIK có: góc IAK = 90 độ và AI = AK

Vậy tam giác AIK vuông cân tại A.

26 tháng 7 2018

A B C D E I K

Dễ thấy ^ABD = ^ACE (Cùng phụ ^BAC) <=> 1800 - ^ABD = 1800 - ^ACE => ^ABI = ^KCA

Xét \(\Delta\)AIB và \(\Delta\)KAC: AB=KC; ^ABI = ^KCA; IB = AC => \(\Delta\)AIB = \(\Delta\)KAC (c.g.c)

=> AI = KA (2 cạnh tương ứng) (1)

Và ^AIB = ^KAC. Ta có: ^ABD là góc ngoài \(\Delta\)AIB => ^ABD = ^AIB + ^BAI

=> ^ABD = ^KAC + ^BAI. Mà ^ABD + ^BAC = 900 (Do \(\Delta\)ADB vuông ở D)

=> ^KAC + ^BAI + ^BAC = 900 => ^IAK = 900 (2)

Từ (1) và (2) => \(\Delta\)AIK vuông cân tại A (đpcm).

29 tháng 7 2018

a) Vì tg ABC cân=> ^ABC = ^ACB mà 180-ABC=ABD và 180-ACB=ACE

=> ^ABD = ^ACE

TG ABD = TG ACE (c.g.c)

=> ABD=ACE => TG ADE cân(đpcm)

b) * CM được TG HBD = TG KCE (cạnh huyền- góc nhọn)

=> BH=CK (đpcm)

=> DH=KE

* Ta có: AD = AE (vì TG ADE cân)

DH=KE(CMT)

mà AD - DH = AH

     AE - KE = AK

=> AH = AK

và DH=KE ( CMT)

Do đó: HK là đường trung bình của TG ADE

=> HK // DE

c, ý b là BOC?

^HBD=^KCE (TG HBD= TG KCE )

=> ^CBO = ^BCO (đối đỉnh vs 2 góc = nhau)

=> TG OBC cân