K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2021

a)Có \(\widehat{MEC}=\widehat{MFC}\left(=90^0\right)\)

=>Tứ giác MECF nội tiếp

b)Có \(\widehat{AMB}=\widehat{ACB}\) (hai góc nội tiếp cùng chắn một cung)

\(\widehat{ACB}=\widehat{EMF}\) (hai góc nội tiếp cùng chắn một cung trong đt ngoại tiếp tứ giác MECF)

\(\Rightarrow\widehat{AMB}=\widehat{EMF}\)

Tương tự cũng có: \(\widehat{ABM}=\widehat{EFM}=\left(\widehat{ECM}\right)\)

Xét \(\Delta BMA\) và \(\Delta MEF\) có:

\(\widehat{AMB}=\widehat{EMF}\)

\(\widehat{ABM}=\widehat{EFM}\)

nên \(\Delta BMA\sim\Delta FME\left(g.g\right)\) 

\(\Rightarrow\dfrac{BM}{FM}=\dfrac{BA}{FE}\) \(\Leftrightarrow BM.EF=AB.FM\)

c) Gọi \(K=FE\cap AB\)

Có \(\widehat{MFK}=\widehat{ABM}\left(=\widehat{ECM}\right)\)

\(\Rightarrow\)Tứ giác BKMF nội tiếp

\(\Rightarrow\widehat{BKM}+\widehat{MFB}=180^0\)

\(\Rightarrow\widehat{BKM}=90^0\)

Có: \(\widehat{PAM}+\widehat{BCM}=180^0\) (vì BAMC nội tiếp do bốn đỉnh cùng thuộc đt tâm O)

\(\widehat{MCB}+\widehat{MEF}=180^0\) (vì EMCF nội tiếp)

\(\Rightarrow\widehat{PAM}=\widehat{MEQ}\) mà \(\dfrac{AP}{EQ}=\dfrac{\dfrac{1}{2}AB}{\dfrac{1}{2}EF}=\dfrac{AB}{EF}=\dfrac{AM}{EM}\)

=> Tam giác APM và EQM đồng dạng (c.g.c)

\(\Rightarrow\widehat{APM}=\widehat{EQM}\) hay góc KPM= góc KQM

\(\Rightarrow\) Tứ giác KPQM nội tiếp

\(\Rightarrow\widehat{PKM}+\widehat{MQP}=180^0\)

\(\Rightarrow\widehat{MQP}=180^0-90^0=90^0\)

\(\Rightarrow\Delta MQP\) vuông tại Q

=> PM2=MQ2+PQ

(toi xỉu)

4 tháng 3 2022

a, Xét tứ giác CDME có 

^MEC = ^MDC = 900

mà 2 góc này kề, cùng nhìn cạnh MC 

Vậy tứ giác CDME là tứ giác nt 1 đường tròn 

b, bạn ktra lại đề 

15 tháng 4 2021
Mình đã làm được câu 1,2,3 rồi.Nhờ mọi người giúp câu 4 nha.
18 tháng 12 2019

a, HS tự chứng minh

b, HS tự chứng minh

c, HS tự chứng minh

d, ∆MIH:∆MAB

=>  M H M B = I H A B = 2 E H 2 F B = E H F B

=> ∆MHE:∆MBF

=>  M F A ^ = M E K ^  (cùng bù với hai góc bằng nhau)

=> KMEF nội tiếp =>  M E F ^ = 90 0

4 tháng 4 2015

a) Tứ giác MFEC có: MEC = MFC   => Tứ giác MFEC là tứ giác nội tiếp

(tứ giác có 2 góc kề cùng nhìn 1 cạnh đối diện với 1 góc bằng nhau là tứ giác nội tiếp)

b) Ta có: ABM = ACM (cùng chắn cung AM) ; FCM (hay ACM) = FEM (vì tứ giác MFEC nội tiếp)

=> ABM = FEM      (1)

Tương tự ta có: AMB = ACB (cùng chắn cung AB) ; FCE (hay ACB) = FME (vì tứ giác MFEC nội tiếp)

=> AMB = FME       (2)

Từ (1) và (2) suy ra: Tam giác ABM đồng dạng Tam giác FEM

=> BA / EF = MB / EM              hay            MB.EF = BA.EM

c) Ta có: Tam giác ABM đồng dạng Tam giác FEM

=> MAB = MFE          và        AB / FE = MA / MF

=> MAB = MFE          và       1/2AB / 1/2FE = MA / MF

=> MAB = MFE          và       AP / FQ = MA / MF

=> Tam giác AMP đồng dạng Tam giác FMQ (c.g.c)

 

3 tháng 5 2018

b. Do tứ giác MDBE nội tiếp (cmt) => \(\widehat{MBE}=\widehat{MBC}=\widehat{MDE}=\frac{1}{2}sđ\widebat{MC}\)(1)

Vì MD \(\perp\)AB tại D (gt) => \(\widehat{MDA}=90^o\)

MF \(\perp\)AC tại F (gt) => \(\widehat{MFA}=90^o\)

Xét tứ giác ADMF có: \(\widehat{MDA}+\widehat{MFA}=90^o+90^o=180^o\)=> tứ giác ADMF nội tiếp (dhnb)

=> \(\widehat{MDF}=\widehat{MAF}=\widehat{MAC}=\frac{1}{2}sđ\widebat{MC}\)(2)

Từ (1) và (2) => \(\widehat{MDE}=\widehat{MDF}\)=> D, E, F thẳng hàng (2 góc có cùng số đo, có 1 cạnh chung, 2 cạnh còn lại của 2 góc cùng nằm về 1 phía so với cạnh chung thì 2 cạnh còn lại trùng nhau)

* Ta có: tứ giác MEFC nội tiếp (cmt) => \(\widehat{EFM}=\widehat{ECM}=\frac{1}{2}sđ\widebat{EM}\)\(\Leftrightarrow\widehat{DFM}=\widehat{BCM}\)(3)

tứ giác MDBE nội tiếp (cmt) => \(\widehat{MDE}=\widehat{MBE}=\frac{1}{2}sđ\widebat{ME}\)\(\Leftrightarrow\widehat{MDF}=\widehat{MBC}\)(4)

Từ (3) và (4) => \(\Delta MDF\)đồng dạng với \(\Delta MBC\)(g.g) => \(\frac{MD}{MB}=\frac{MF}{MC}\Leftrightarrow MB\times MF=MD\times MC\)(đpcm)

c. Nối A với M, B với M 

Ta có: \(\widehat{AMB}=\widehat{ACB}=\frac{1}{2}sđ\widebat{AB}\)(5)

Do tứ giác MEFC nội tiếp => \(\widehat{FME}=\widehat{FCE}=\frac{1}{2}sđ\widebat{EF}=\widehat{ACB}=\frac{1}{2}sđ\widebat{AB}\)(6)

Từ (5) và (6) => \(\widehat{AMB}=\widehat{FME}\)(7)

lại có: tứ giác ADMF nội tiếp (cmt) => \(\widehat{MAD}=\widehat{MFD}=\frac{1}{2}sđ\widebat{MD}\Leftrightarrow\widehat{MAB}=\widehat{MFE}\)(8)

từ (7) và (8) => \(\Delta ABM\)đồng dạng với \(\Delta FEM\)(g.g) => \(\frac{AB}{FE}=\frac{AM}{FM}\Leftrightarrow\frac{AB}{AM}=\frac{FE}{FM}\Leftrightarrow\frac{2\times AI}{AM}=\frac{2\times FK}{FM}\Leftrightarrow\frac{AI}{AM}=\frac{FK}{FM}\)(9)

Lại có: \(\widehat{MAD}=\widehat{MFD}\)(CMT) => \(\widehat{MAI}=\widehat{MFK}\)(10)

Từ (9) và (10) => \(\Delta MAI\)đồng dạng với \(\Delta MFK\)(c.g.c) => \(\widehat{IMA}=\widehat{KMF}\)(11)

Ta có: \(\widehat{MID}\)là góc ngoài tại đỉnh I của \(\Delta MAI\)=> \(\widehat{MID}=\widehat{MAI}+\widehat{IMA}\)

Tương tự: \(\widehat{MKD}\)là góc ngoài tại đỉnh K của \(\Delta MFK\)=> \(\widehat{MKD}=\widehat{MFK}+\widehat{KMF}\)

Từ (10) và (11) => \(\widehat{MID}=\widehat{MKD}\)=> Tứ giác MDIK là tứ giác nội tiếp (DHNB) => \(\widehat{IDM}+\widehat{IKM}=180^o\)(Hệ quả)

Mà \(\widehat{IDM}=\widehat{ADM}=90^o\)=> \(\widehat{IKM}=90^o\)<=> MK vuông góc với KI (ĐPCM)

3 tháng 6 2021

mọi người giúp mình nha

cảm ơn nhiều ạ ^^

3 tháng 6 2021

a. xét MEFC có:

∠MEC=90 (ME⊥BC)

∠MFC=90 (MF⊥AC)

⇒∠MEC=∠MFC=90

⇒tứ giác MEFC nội tiếp

xét tứ giác DBEM có

∠BDM+∠BEM=180

⇒ tứ giác DBEM nội tiếp⇒∠DBM=∠DEM