K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2021

A B C x y M D E

30 tháng 3 2021

Với mọi vị trí điểm \(M\in BC\), ta luôn có:

\(S_{MAB}+S_{MAC}=S_{ABC}\)

Vì \(\Delta ABM\)có \(BD\perp AM\)

\(\Rightarrow S_{MAB}=\frac{BD.AM}{2}\)
Vì \(\Delta CAM\)có \(CE\perp AM\)

\(\Rightarrow S_{MAC}=\frac{CE.AM}{2}\)

Do đó \(\frac{BD.AM}{2}+\frac{CE.AM}{2}=S_{ABC}\)

\(\Rightarrow\left(BD+CE\right)AM=2S_{ABC}\)

\(\Rightarrow BD+CE=\frac{2S_{ABC}}{AM}\)

Vì \(S_{ABC}\)không đổi \(\Rightarrow2S_{ABC}\)không đổi.

Do đó \(\left(BD+CE\right)_{max}\Leftrightarrow AM_{max}\) 

Giả sử \(AB\le AC\)thì trong 2 đường xiên AM và AC, thì AM là đường xiên ngắn hơn. Do đó  : \(AM\le AC\).

Dấu bằng xảy ra \(\Leftrightarrow M\equiv C\).

\(\Rightarrow\)Đường thẳng xy phải dựng là đường thẳng là đường thẳng chứa cạnh lớn nhất trong 2 cạnh AB hoặc AC thì \(BD+CE\)đạt giá trị lớn nhất.

Vậy...

2 tháng 9 2020

Bày này chỉ có đạt giá trị lớn nhất thôi nhé ! Bạn xem lại đề !

D E B A K M C

Lời giải :

Gọi \(M\) là trung điểm của \(BC.\) \(\Rightarrow AM\) không đổi.

Kẻ \(KM\perp DE\)

Khi đó tứ giác \(BDEC\) là hình thang. \(\left(BD//KM//EC\right)\)

Xét hình thang \(BDCE\) có : \(M\) là trung điểm của \(BC,\) \(BD//KM//EC\) ( cmt )

\(\Rightarrow K\) là trung điểm của \(DE\)

\(\Rightarrow KM\) là đường trung bình của hình thang \(BDEC\)

\(\Rightarrow BD+EC=2.KM\)

Mặt khác ta có : \(KM\le AM\) nên \(BD+EC\le2AM\) 

Dấu "=" xảy ra \(\Leftrightarrow xy\perp AM\)

Vậy \(BD+CE\) đạt giá trị lớn nhất là \(2AM\) \(\Leftrightarrow xy\perp AM\)

12 tháng 9 2018

Gọi D là trung điểm BC. Kẻ MI vuông  với xyy tại I.

Vì BM vuông góc xy

    CN vuông góc xy

    DI vuông góc xy

=> BM // CN // DI

Vì BM // CN

=> BMNC là hình thang

mà D là trung điểm BC, DI // BM // CN

=> I là trung điểm MN 

mà D là trung điểm BC

=> DI là đường trung bình của hình thang BMNC.

=> DI = \(\frac{BM+CN}{2}\)

=> BM + CN = 2DI

Có DI < DA ( quan hệ giữa đường vuông góc và đường xiên.

Để BM + CN lớn nhất

thì DI lớn nhất

=> DI trùng AD

=> DA vuông góc với xy

Vậy,  nếu xy vuông góc với đường trung tuyến AD của tam giác ABC thì BM + CN lớn nhất.

12 tháng 9 2018

Sao lại thế được. Xin lỗi nhưng cách giải của bạn hơi mâu thuẫn...

10 tháng 9 2019

A B C D E F

Mình nói trước là mình mới học dạng này nên không chắc đâu nhé! Nhất là cái dấu "=" ấy, nó rất khó để giải thích và có thể sai. Nếu bạn dùng geogebra thì sẽ dễ hiểu hơn.

Đặt BC = a = const (hằng số)

Xét trường hợp E và F không trùng D. Khi đó theo quan hệ giữa đường vuông góc và đường xiên thì:

BE + CF < BD + CD = BC (1)

Nếu E và F trùng D thì BE + CF = BC (2)

Từ (1) và (2) suy ra \(BE+CF\le BC=const\)

Đẳng thức xảy ra khi E và F trùng D khi đó D là trung điểm BC và tam giác ABC cân tại A.

11 tháng 9 2019

tth làm không đúng rồi.

Ta có E là hình chiếu của B lên AD 

F là hình chiếu của CAD

=> \(BC=BD+DC\ge BE+CF\)

Dấu "=" xảy ra khi và chỉ khi \(E\equiv D\equiv F\)

khi đó: \(BD\perp AD;CD\perp AD\)=> D là chân đường cao hạ từ A đến BC 

Vậy D là chân đường cao hạ từ A đến BC thì BE+CF đạt giá trị lớn nhất bằng BC