Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Xét tam giác ABH và tam giác CBH có:
HD=HA( gt)
góc H1= góc H2 ( = 90 độ )
cạnh BH chung
\(\Rightarrow\)tam giác ABH = tam giác CBH ( c-g-c)
\(\Rightarrow\)góc ABH= Góc CBH ( 2 góc tương ứng )
\(\Rightarrow\)BH là tia phân giác góc ABD hay BC là tia phân giác góc ABD
Chứng minh tương tự suy ra tam giác AHC = tam giác DHC ( c-g-c)
\(\Rightarrow\)góc ACH= Góc DCH ( 2 góc tương ứng )
\(\Rightarrow\)CH là tia phân giác góc ACD hay BC là tia phân giác góc ACD
b)
b) Do tam giác ABH = tam giác CBH ( cmt)
suy ra BA= BD ( 2 cạnh tương ứng )
Do tam giác ACH = tam giác DCH ( cmt)
suy ra CA = CD ( 2 cạnh tương ứng )
a/ +)Ta có: \(\widehat{AHC}=90^o\left(gt\right)\)
mà \(\widehat{AHC}+\widehat{DHC}=180^o\) (kề bù)
hay \(90^o+\widehat{DHC}=180^o\)
=> \(\widehat{DHC}=180^o-90^o=90^o=\widehat{AHC}\)
Xét t/g ACH và t/g DCH có:
CH: Cạnh chung
\(\widehat{AHC}=\widehat{DHC}=90^o\left(cmt\right)\)
HA = HD (gt)
=> t/g ACH = t/g DCH(c.g.c)
=> CA = CD(2 cạnh tương ứng)(đpcm)
+) Cm tương tự ta có:
t/g ABH = t/g DBH (c.g.c)
=> BA = BD (2 cạnh tương ứng)(đpcm)
b/ Vì t/g ACH = t/g DCH(ý a)
=> \(\widehat{ACH}=\widehat{DCH}\) = 45o
Trong t/g DCH có:
\(\widehat{DHC}+\widehat{DCH}+\widehat{HDC}=180^o\) (tổng các góc trog t/g)
hay \(90^o+45^o+\widehat{HDC}=180^o\)
=> \(\widehat{HDC}=180^o-90^o-45^o=45^o\)
Vậy \(\widehat{ADC}=45^o\)
c/ Đường cao AH cần phải thêm điều kiện là: đường trung trực của BC thì AB // CD
Cả buối ấy Huy làm thịt được bốn con gà, tất cả đều là gà trống và không có bất cứ một con gà mái nào. Huy cũng cảm thấy có đôi chút kỳ lạ, bởi vì trong chuống gà của nhà ông Phúc, tại sao lại không hề có một con gà mái nào, gà con cũng không hề có, mà chỉ toàn là gà trống như vậy? Nhưng vấn đề ấy Huy cũng chỉ nghĩ một lúc, rồi lại tự lắc đầu cho rằng mình toàn tự hỏi vớ vẩn linh tinh mấy cái chuyện không đâu.
Làm thịt xong mấy con gà trống, thì mặt trời cũng đã đứng bóng, Huy vội xách mấy con gà đã làm thịt vào nhà đặt vào chiếc nồi nhôm to bằng cái thúng, hết lượt cả bốn con gà đều được sắp đặt ngay ngắn, chiếc cổ gà đều được dúi gọn xuống ngập nồi nước.
Huy toan đóng nắp nồi, thì một cảnh tượng kinh khủng hiện ra. Cái con gà trống anh vừa mới cắt cổ mới đây lại đang nghển cổ dậy kêu quang quác như một con chim lợn. Cái tiếng kêu của nó không phải là thứ âm thanh mà đáng ra giống loài của nó không nên xuất hiện.
Éc éc!
Bài 1:
a)+ Vì AB = ACNÊN
==>Tam giác ABC cân tại A
==>góc ABI = góc ACI
+ Xét tam giác ABI và tam giác ACI có:
AI là cạch chung
AB = AC(gt)
BI = IC ( I là trung điểm của BC)
Vậy tam giác ABI = tam giác ACI (c.c.c)
==> góc BAI = góc CAI ( 2 góc tương ứng )
==>AI là tia phân giác của góc BAC
b)
Xét tam giác BAM và tam giác BAN có:
AB = AC (gt)
góc B = góc C (cmt)
BM = CN ( gt )
Vậy tam giác BAM = tam giác CAN (c.g.c)
==> AM = AN (2 cạnh tương ứng)
c)
vì tam giác BAI = tam giác CAI (cmt)
==>góc AIB = góc AIC (2 góc tương ứng)
Mà góc AIB+ góc AIC = 180độ ( kề bù)
nên AIB=AIC=180:2=90
==>AI vuông góc với BC
c)Vì tam giác ABC vuông cân tại A nên AB=AC;^B=^C
nên BH=HC(đtt)
Vẽ tam giác BGH cân tại H nằm khác phía với AH
nên BH=HG mà BH=HC nên HG=HC
Xét 2 tam giác BGH và AHC có(t ko ghi đúng thứ tự đỉnh)
^BHG=^AHB(2 góc đôi đỉnh)
HG=HC
^G=^C
Do đó, tg BGH=tg AHC(g.c.g)
=>BH=AH(2 cạnh tương ứng) mà BH=HC nên AH=HC mà AH=DK nên HD=DK
Vậy tam giác ABC vuông cân thì CH=DK
t cũng ko chắc lm(thực hiện lời nói muộn)
a,xét hai tam giác HBM và HBD(có 2 góc H=90 độ)
Ta có:BH cạnh chung,HM=HD
suy ra tam giác HBM= tam giác HBD (cgv-cgv)
suy ra BM=BD (2 cạnh tương ứng)
xét tam giác BMD có BM=BD suy ra tam giác BMD cân tại B.
b,theo câu a góc MBC =góc DBC (2 góc tương ứng)
xét tam giác MBC và tam giác DBC
TA CÓ;BM=BD,góc MBC=DBC,BC cạnh chung
uy ra tam giác BMC= tam giác DBC(C-G-C)
suy ra góc BMC=BDC (2 góc tương ứng)
c,áp dụng định lý pytago
xét tam giác AHC có HC^2=AC^2-AH^2=10^2
suy ra HC =10
xét tam giác HMC có MH^2=MC^2-HC^2=CD^2-HC^2=56,25
suy ra MH=7,5
suy ra tam giác HMC có diện tích là 7,5*10/2=37,5
a)Xét\(\Delta BMH\)và\(\Delta BDH\)có:
BM là cạnh chung
\(\widehat{BHM}=\widehat{BHD}\left(=90^o\right)\)
MH=DH(GT)
Do đó:\(\Delta BMH=\text{}\text{}\Delta BDH\)(c-g-c)
\(\Rightarrow BM=BD\)(2 cạnh t/ứ)
Xét\(\Delta BDM\)có:\(BM=BD\left(cmt\right)\)
Do đó:\(\Delta BDM\)cân tại B(Định ngĩa\(\Delta\)cân)
b)Vì\(\Delta BMH=\text{}\text{}\Delta BDH\)(cm câu a) nên\(\widehat{MBH}=\widehat{DBH}\)(2 góc t/ứ)
Xét\(\Delta BMC\)và\(\Delta BDC\)có:
BC là cạnh chung
\(\widehat{MBC}=\widehat{DBC}\left(cmt\right)\)
BM=BD(cm câu a)
Do đó:\(\Delta BMC=\Delta BDC\)(c-g-c)
\(\Rightarrow\widehat{BMC}=\widehat{BDC}\)(2 góc t/ứ)
c)Xét\(\Delta AHC\)có:\(AC^2=AH^2+HC^2\)
hay\(26^2=24^2+HC^2\)
\(\Rightarrow HC^2=26^2-24^2=676-576=100\)
\(\Rightarrow HC=\sqrt{100}=10\left(cm\right)\)
Vì\(\Delta BMC=\Delta BDC\)nên\(MC=DC=12,5\left(cm\right)\)
Xét\(\Delta MCH\)có:\(MC^2=MH^2+CH^2\)
hay\(12,5^2=MH^2+10^2\)
\(\Rightarrow MH^2=12,5^2-10^2=156,25-100=56,25\)
\(\Rightarrow MH=\sqrt{56,25}=7,5\left(cm\right)\)
DT của\(\Delta MCH\)là:\(S_{\Delta MCH}=\frac{1}{2}.a.h=\frac{1}{2}.10.7,5=5.7,5=37,5\left(cm^2\right)\)