Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác BFEC có
\(\widehat{BEC}=\widehat{BFC}=90^0\)
Do đó: BFEC là tứ giác nội tiếp
hay B,F,E,C cùng thuộc 1 đường tròn
a: Xét tứ giác AEHF có
\(\widehat{AEH}+\widehat{AFH}=180^0\)
Do đó: AEHF là tứ giác nội tiếp
b: Xét tứ giác BFEC có
\(\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\)
Do đó: BFEC là tứ giác nội tiếp
a) Ta có: \(\widehat{CFB}=90^0\)(CF⊥AB)
nên F nằm trên đường tròn đường kính CB(Định lí)(1)
Ta có: \(\widehat{CEB}=90^0\)(BE⊥AC)
nên E nằm trên đường tròn đường kính CB(Định lí)(2)
Từ (1) và (2) suy ra F,E cùng nằm trên đường tròn đường kính CB
hay B,E,F,C cùng thuộc một đường tròn(đpcm)
Tâm I của đường tròn ngoại tiếp tứ giác BEFC là trung điểm của CB
b) Ta có: BEFC là tứ giác nội tiếp(cmt)
nên \(\widehat{EFC}=\widehat{EBC}\)(Cùng nhìn cạnh EC)
\(\Leftrightarrow\widehat{KFC}=\widehat{KBE}\)
Xét ΔKFC và ΔKBE có
\(\widehat{FKB}\) chung
\(\widehat{KFC}=\widehat{KBE}\)(cmt)
Do đó: ΔKFC∼ΔKBE(g-g)
⇒\(\dfrac{KF}{KB}=\dfrac{KC}{KE}\)(Các cặp cạnh tương ứng tỉ lệ)
⇒\(KE\cdot KF=KB\cdot KC\)(đpcm)