Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABM vuông tại M và ΔACN vuông tại N có
góc BAM chung
=>ΔABM đồng dạng với ΔACN
b: ΔABM đồng dạng với ΔACN
=>AM/AN=AB/AC
=>AM/AB=AN/AC
mà góc MAN chung
nen ΔAMN đồng dạng với ΔABC
c: Xét ΔBKH vuông tại K và ΔBMC vuông tại M có
góc KBH chung
=>ΔBKH đồng dạng với ΔBMC
=>BK/BM=BH/BC
=>BK*BC=BH*BM
Xét ΔCKH vuông tại K và ΔCNB vuông tại N có
góc KCH chung
=>ΔCKH đồng dạng với ΔCNB
=>CK/CN=CH/CB
=>CK*CB=CH*CN
=>BH*BM+CH*CN=BK*BC+CK*BC=BC^2
d: ΔANM đồng dạng với ΔABC
=>\(\dfrac{S_{ANM}}{S_{ABC}}=\left(\dfrac{AN}{AB}\right)^2=\dfrac{1}{4}\)
=>ĐPCM
a)xét ΔABD và ΔAMD có:
góc BAD= góc MAD(AD là tia phân giác )
AD chung
góc ABD = góc AMD(=90độ) (ΔABC ⊥B; DM⊥AC)
⇒ΔABD=ΔAMD(ch-cgv)
b)Có:AB=AM (ΔABD=ΔAMD)
⇒A ϵ đường trung trực của BC (t/c đường trung trực)(1)
Lại có : BD=MD(ΔABD=ΔAMD)
⇒D ϵ đường trung trực BM(t/c đường trung trực) (2)
Từ (1) và(2)⇒AD là đường trung trực BM
c)Xét ΔBNDvàΔMCD có:
góc DBN =góc DMC (90độ)(ΔABC ⊥B; DM⊥AC)
BD=MD(ΔABD=ΔAMD)
góc BDN=MDC(2 góc dối đỉnh)
⇒ ΔBND=ΔMCD(g.c.g)
⇒BN=MC(2 cạnh tương ứng)
Có: AB+BN=AN và AM+MC=AC
Mà AB=AM(ΔABD=ΔAMD) và BN=MC (CMT)
⇒AN =AC
⇒ΔANC cân
Lại có góc A =60 độ
⇒ΔANC đều
(hình vẽ minh họa)
d)CÓ: AD là tia phân giác góc BAC
⇒góc BAD= góc CAD=1/2 góc BAC=1/2 . 60độ=30 độ
⇒góc BAI=30độ
Lại có: góc NBD=90độ(ΔABC⊥B)
⇒BI<ND(quan hệ giữa góc và cạnh đối diện)
a, Xét tam giác ADB và tam giác CDI có:
góc ADB = góc CDI (đối đỉnh)
góc BAD = góc DCI (gt)
Do đó: Tam giác ADB đồng dạng với tam giác CDI (g.g) (1)
Suy ra: góc ABD = góc DIC
b, Tam giác ADB đồng dạng với tam giác ACI (g.g) (2)
Suy ra: AD/AC = AB/AI
c, Từ (1),ta thấy: AD/CD = DB/DI nên AD.DI = BD.BC
Từ (2),ta có: AD/AC = AB/AI nên AD.AI = AB.AC
Do đó: AD(AI-DI) = AB.AC - BD.BC
AD^2 = AB.AC -BD.BC
Bài bạn đưa ra hơi khó đấy.Chúc bạn học tốt.
a) Xét tam giác MBD và tam giác MAB:
\(\widehat{DMB}chung.\)
\(\widehat{DBM}=\widehat{BAM}\left(\widehat{CBx}=\widehat{BAD}\right).\)
=> Tam giác MBD \(\sim\) Tam giác MAB (g - g).
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
góc BAE chung
=>ΔABE đồng dạng với ΔACF
=>AB/AC=AE/AF
=>AE/AB=AF/AC và AE*AC=AB*AF
b: Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc A chung
=>ΔAEF đồng dạng với ΔABC
=>góc AEF=góc ACB
c; góc AFH=góc AEH=90 độ
=>AFHE nội tiếp (I)
=>IF=IE
góc BFC=góc BEC=90 độ
=>BFEC nội tiếp (M)
=>MF=ME
=>MI là trung trực của EF
=>MI vuông góc EF
a: Xét ΔAHF vuông tại F và ΔABD vuông tại D có
\(\widehat{HAF}\) chung
Do đó: ΔAHF∼ΔABD
b: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{FAC}\) chung
Do đó: ΔAEB∼ΔAFC
Suy ra: AE/AF=AB/AC
hay \(AE\cdot AC=AB\cdot AF\)
c: Xét tứ giác BFHD có
\(\widehat{BFH}+\widehat{BDH}=180^0\)
Do đó: BFHD là tứ giác nội tiếp
Suy ra: \(\widehat{ABE}=\widehat{ADF}\)
a: Xét ΔABM vuông tại M và ΔACN vuông tại N có
\(\widehat{BAM}\) chung
Do đó: ΔABM\(\sim\)ΔACN
b: Ta có: ΔABM\(\sim\)ΔACN
nên AB/AC=AM/AN
hay AM/AB=AN/AC
Xét ΔAMN và ΔABC có
AM/AB=AN/AC
\(\widehat{MAN}\) chung
Do đó: ΔAMN\(\sim\)ΔABC