K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
9 tháng 4 2022

Ta có:

\(cotA=\dfrac{cosA}{sinA}=\dfrac{b^2+c^2-a^2}{2bc}:\dfrac{2S}{bc}=\dfrac{b^2+c^2-a^2}{4S}\)

Tương tự...

Thay vào đề bài:

\(2\left(\dfrac{b^2+c^2-a^2}{4S}+\dfrac{a^2+b^2-c^2}{4S}\right)=\dfrac{a^2+c^2-b^2}{4S}\)

\(\Rightarrow4b^2=a^2+c^2-b^2\Rightarrow5b^2=a^2+c^2\)

\(\Rightarrow cosB=\dfrac{a^2+c^2-b^2}{2ac}=\dfrac{a^2+c^2-\dfrac{a^2+c^2}{5}}{2ac}=\dfrac{2\left(a^2+c^2\right)}{5ac}\ge\dfrac{4ac}{5ac}=\dfrac{4}{5}\)

\(\Rightarrow sinB=\sqrt{1-cos^2B}\le\sqrt{1-\left(\dfrac{4}{5}\right)^2}=\dfrac{3}{5}\)

Em kiểm tra lại đề, BĐT đề bài bị ngược dấu

10 tháng 4 2022

con cảm ơn thầy ạ.

19 tháng 2 2016

15/25

 

13 tháng 11 2019

Chọn B.

Ta có: góc A tù nên  cos A < 0 ; sinA > 0 ; tan A < 0 ; cot A < 0

Do góc A tù nên góc B và C là các góc nhọn có các giá trị lượng giác đều dương

Do đó: M > 0 ; N > 0 ; P > 0 và Q < 0.

9 tháng 4 2022

`Answer:`

a) \(a^2=b^2+c^2-2bc\cos A\)

\(2S=bc.\sin A\)

\(\Rightarrow2bc=\frac{4S}{\sin A}\)

\(\Rightarrow a^2=b^2+c^2-\frac{4S\cos A}{\sin A}=b^2+c^2-4S\cot A\)

\(\Rightarrow\cot A=\frac{b^2+c^2-a^2}{4S}\)

6 tháng 11 2019

a, \(\left(1-sin^2x\right)cot^2x+1-cot^2x\)

\(=cot^2x-sin^2x.cot^2x+1-cot^2x\)

\(=1-sin^2x.\frac{\text{cos}^2x}{sin^2x}=1-\text{cos}^2x=sin^2x\)

b,\(\left(tanx+cotx\right)^2-\left(tanx-cotx\right)2\)

\(=tan^2x2.tanx.cotx+cot^2x-tan^2x+2tanx.cotx-cot^2x\)

\(=4tanxcotx=4\)

c,\(\left(xsina-y\text{cos}a\right)^2+\left(x\text{cos}a+ysina\right)^2\)

\(=x^2sin^2a=2xysina\text{cos}a+y^2\text{cos}^2a+2xysina\text{cos}a+y^2sin^2a\)

\(=x^2\left(sin^2a+\text{cos}^2a\right)+y^2\left(sin^2a+\text{cos}^2a\right)\)

\(=x^2+y^2\)