Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(b^2-c^2=ab.cosC-ac.cosB\)
Ta có: \(b.cosC-c.cosB=ab.\dfrac{a^2+b^2-c^2}{2ab}-ac.\dfrac{a^2+c^2-b^2}{2ac}\)
\(=\dfrac{a^2+b^2-c^2}{2}-\dfrac{a^2+c^2-b^2}{2}=\dfrac{2b^2-2c^2}{2}=b^2-c^2\) (đpcm)
b/ \(ac.cosC-ab.cosB=ac.\dfrac{a^2+b^2-c^2}{2ab}-ab.\dfrac{a^2+c^2-b^2}{2ac}\)
\(=\dfrac{c^2\left(a^2+b^2-c^2\right)-b^2\left(a^2+c^2-b^2\right)}{2bc}=\dfrac{\left(ac\right)^2-\left(ab\right)^2+b^4-c^4}{2bc}\)
\(=\dfrac{-a^2\left(b^2-c^2\right)+\left(b^2-c^2\right)\left(b^2+c^2\right)}{2bc}=\left(b^2-c^2\right).\dfrac{\left(b^2+c^2-a^2\right)}{2bc}\)
\(=\left(b^2-c^2\right).cosA\) (đpcm)
c/ \(cotA+cotB+cotC=\dfrac{cosA}{sinA}+\dfrac{cosB}{sinB}+\dfrac{cosC}{sinC}=\dfrac{2R.cosA}{a}+\dfrac{2R.cosB}{b}+\dfrac{2R.cosC}{c}\)
\(=2R\left(\dfrac{b^2+c^2-a^2}{2abc}+\dfrac{a^2+c^2-b^2}{2abc}+\dfrac{a^2+b^2-c^2}{2abc}\right)\)
\(=2R\left(\dfrac{a^2+b^2+c^2}{2abc}\right)=\dfrac{a^2+b^2+c^2}{abc}.R\) (đpcm)
Gọi vận tốc của các con kiến trên 3 cạnh lần lượt là \(v_{AB};v_{BC};v_{AC}\)
Đặt \(\dfrac{v_{AB}}{AB}=\dfrac{v_{BC}}{BC}=\dfrac{v_{AC}}{AC}=k\Rightarrow\left\{{}\begin{matrix}v_{AB}=k.AB\\v_{BC}=k.BC\\v_{AC}=k.AC\end{matrix}\right.\)
Tại 1 thời điểm t bất kì, giả sử con kiến trên cạnh AB đi tới điểm M, con kiến trên cạnh BC đi tới điểm N, con kiến trên cạnh CA đi tới điểm P
\(\Rightarrow\left\{{}\begin{matrix}AM=t.v_{AB}=t.k.AB\\BN=t.v_{BC}=t.k.BC\\CP=t.v_{CA}=t.k.CA\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AM}=t.k.\overrightarrow{AB}\\\overrightarrow{BN}=t.k.\overrightarrow{BC}\\\overrightarrow{CP}=t.k.\overrightarrow{CA}\end{matrix}\right.\) (1)
Gọi G là trọng tâm tam giác ABC
Từ (1) ta có:
\(\overrightarrow{AM}+\overrightarrow{BN}+\overrightarrow{CP}=tk\left(\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CA}\right)=tk.\overrightarrow{0}=\overrightarrow{0}\)
\(\Rightarrow\overrightarrow{AG}+\overrightarrow{GM}+\overrightarrow{BG}+\overrightarrow{GN}+\overrightarrow{CG}+\overrightarrow{GP}=\overrightarrow{0}\)
\(\Rightarrow\left(\overrightarrow{AG}+\overrightarrow{BG}+\overrightarrow{CG}\right)+\overrightarrow{GM}+\overrightarrow{GN}+\overrightarrow{GP}=\overrightarrow{0}\)
\(\Rightarrow\overrightarrow{0}+\overrightarrow{GM}+\overrightarrow{GN}+\overrightarrow{GP}=\overrightarrow{0}\)
\(\Rightarrow\overrightarrow{GM}+\overrightarrow{GN}+\overrightarrow{GP}=\overrightarrow{0}\)
\(\Rightarrow G\) là trọng tâm tam giác MNP
\(\Rightarrow\) Tại mọi thời điểm thì tam giác tạo bởi 3 con kiến luôn có trọng tâm không đổi, là điểm trùng với trọng tâm của tam giác ABC
Đề bài sai nhé em, bài toán chỉ đúng trong trường hợp duy nhất, đó là khi vận tốc của các con kiến thỏa mãn \(\dfrac{v_{AB}}{AB}=\dfrac{v_{BC}}{BC}=\dfrac{v_{CA}}{CA}\) (nghĩa là vận tốc con kiến trên cạnh nào thì có độ lớn tỉ lệ với độ dài cạnh ấy). Chuyển động đều là chưa đủ.
\(b.cosC+c.cosB=b.\frac{a^2+b^2-c^2}{2ab}+c.\frac{a^2+c^2-b^2}{2ac}\)
\(=\frac{a^2+b^2-c^2}{2a}+\frac{a^2+c^2-b^2}{2a}=\frac{a^2+b^2-c^2+a^2+c^2-b^2}{2a}=\frac{2a^2}{2a}=a\)
Hai cái dưới chứng minh y hệt