Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{b^2-a^2}{2c}=b.\dfrac{\left(b^2+c^2-a^2\right)}{2bc}-a.\dfrac{\left(a^2+c^2-b^2\right)}{2ac}\)
\(\Leftrightarrow\dfrac{b^2-a^2}{2c}=\dfrac{b^2+c^2-a^2}{2c}-\dfrac{a^2+c^2-b^2}{2c}\)
\(\Leftrightarrow b^2-a^2=\left(b^2+c^2-a^2\right)-\left(a^2+c^2-b^2\right)\)
\(\Leftrightarrow3b^2=3a^2\Leftrightarrow a=b\)
Hay tam giác cân tại C
1.
Áp dụng công thức trung tuyến:
\(m_b^2+m_c^2=\dfrac{2a^2+2c^2-b^2}{4}+\dfrac{2a^2+2b^2-c^2}{4}\)
\(=\dfrac{4a^2+b^2+c^2}{4}\)
\(=\dfrac{9a^2+b^2+c^2-5a^2}{4}\)
\(=\dfrac{9\left(b^2+c^2\right)+b^2+c^2-5a^2}{4}\)
\(=5\left(\dfrac{b^2+c^2}{2}-\dfrac{a^2}{4}\right)=5m_a\)
\(AB=\sqrt{\left(-2-2\right)^2+\left(-1+2\right)^2}=\sqrt{17}\)
\(AC=\sqrt{\left(1-2\right)^2+\left(2+2\right)^2}=\sqrt{17}\)
Vậy tam giác ABC cân tại A.
Ta có: \(\left\{{}\begin{matrix}S_{ABC}=\dfrac{1}{2}bc.sinA\\S_{ABC}=\dfrac{1}{2}a.h_a\end{matrix}\right.\)
\(\Rightarrow a.h_a=bc.sinA\)
\(\Rightarrow a.c.sinA=bc.sinA\)
\(\Rightarrow a=b\)
Vậy tam giác ABC cân tại C
a.
Gọi (D):y=ax+b chứa điểm A, C
(D'):y=a'x+b' chứa điểm B, C
* Ta có: A thuộc (D) khi 1= 2a+b (1)
C thuộc (D) khi 4= 3a+b (2)
Giải hệ (1), (2) ta suy ra a=3 , b=-5
* Ta có: B thuộc (D') khi 3=6a'+b' (3)
C thuộc (D') khi 4=3a'+b' (4)
Giải hệ (3), (4) ta suy ra a=-1/3 , b= 5
Ta thấy: a.a' = 3.(-1/3)=-1
Suy ra (D) vuông góc (D') tại điểm chung C của của 2 cạnh (5)
Vậy tam giác ABC vuông tại C
Theo công thức tính cạnh của đoạn thẳng trong hệ trục tọa độ ta có:
AC=\(\sqrt{\left(x_A-x_C\right)^2+\left(y_A-y_C\right)^2}=\sqrt{\left(2-3\right)^2+\left(1-4\right)^2}\)\(=\sqrt{10}\)
BC=\(\sqrt{\left(x_B-x_C\right)^2+\left(y_B-y_C\right)^2}=\sqrt{\left(6-3\right)^2+\left(3-4\right)^2}\)\(=\sqrt{10}\)
Vậy AC=BC (6)
Từ (5) và (6) ta suy ra tam giác ABC vuông cân tại C
SABC=\(\dfrac{1}{2}\).AB.BC=\(\dfrac{1}{2}.\sqrt{10}.\sqrt{10}=\dfrac{1}{2}.10=\)5 (đvdt)
b. Làm tương tự câu a tìm độ dài các cạnh AB, BD, DA và tính diện tích bằng công thức SABD=\(\sqrt{p\left(p-AB\right)\left(p-BD\right)\left(p-DA\right)}\) với p là nửa chu vi tam giác ABD \(p=\dfrac{1}{2}\left(AB+BD+DA\right)\)
Tiếp tục dùng công thức SABD=\(=\dfrac{1}{2}.AB.BD.sinB\) các số liệu nêu trên đã có, chỉ cần thế vào là có góc B
Gọi I là tâm. Tìm độ dài bán kình bằng công thức SABD=\(\dfrac{AB.BD.DA}{4AI}\)
ta tìm được độ dài AI còn cách xác định tâm thì dựa vào giao điểm 2 đường thẳng (d) chứa đoạn AI và (d') chứa đoạn BI là xong
\(4m_a^2=b\left(b+4c.\cos A\right)=b^2+4bc.\cos A\Rightarrow m_a^2=\dfrac{b^2+4bc.cosA}{4}\)
\(m_a^2=\dfrac{b^2+c^2}{2}-\dfrac{a^2}{4}\)
\(\Rightarrow\dfrac{b^2+4bc.cosA}{4}=\dfrac{b^2+c^2}{2}-\dfrac{a^2}{4}\)
\(\Leftrightarrow b^2+4bc.cosA=2b^2+2c^2-a^2\)
\(\Leftrightarrow b^2+2c^2-a^2=4bc.cosA\)
\(\Leftrightarrow b^2+2c^2-a^2=4bc.\dfrac{b^2+c^2-a^2}{2bc}=2\left(b^2+c^2-a^2\right)\)
\(\Leftrightarrow b^2+2c^2-a^2=2b^2+2c^2-2a^2\)
\(\Leftrightarrow a^2=b^2\Leftrightarrow a=b\Rightarrow\left(đpcm\right)\)