Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tứ giác CDME có
^MEC = ^MDC = 900
mà 2 góc này kề, cùng nhìn cạnh MC
Vậy tứ giác CDME là tứ giác nt 1 đường tròn
b, bạn ktra lại đề
a, ta có \(\widehat{ADB}\)là góc nội tiếp chắn nửa đường tròn => \(\widehat{ADB}=90^0\)hay \(\widehat{EDB}=90^0\)
Xét tứ giác BDEH có :
\(\widehat{EHB}=90^0\left(CH\perp AB\right)\)
\(\widehat{EDB}=90^0\left(cmt\right)\)
=> tugiac BDEH noi tiep
b,
ta có \(\widehat{ADC}=\widehat{ABC}\)( BDEH noitiep cmt)
mà \(\widehat{ABC}+\widehat{CAB}=90^0\)(góc ACB=90 độ, góc nt chắn nửa đg tròn)
\(\widehat{ACH}+\widehat{CAB}=90^0\)( góc AHC=90 độ vì CH vuông với AB)
=> \(\widehat{ABC}=\widehat{ACH}\)
=> \(\widehat{ACH}=\widehat{ADC}\left(=\widehat{ABC}\right)\)hay góc ADC= góc ACE
Xét tam giác ACE và tam giác ADC
\(\widehat{ADC}=\widehat{ACE}\left(cmt\right)\)
góc CAD chung
=> tam giác ACE đồng dạng với tam giác ADC (g-g)
=> \(\frac{AC}{AD}=\frac{AE}{AC}\)
=> \(AC^2=AD.AE\)(1)
Tam giác ABC vuông tại C có AH là đường cao
=> BC2= BH.BA (hethucluong) (2)
(1);(2) => \(AC^2+BC^2=AE.AD+BH.BA\)
mà AC2+ BC2= AB2 ( pytago trong tam giác ABC vuông ở C)
=> \(AB^2=AE.AD+BH.BA\)
Có thể giải gúp tôi được không /
Con mua 17 kg cam , mẹ mua gấp 3 lần số cam của con . Hỏi cả hai mẹ con mua được bao nhiêu kg cam ?
a) Ta có: \(\hept{\begin{cases}\widehat{BMD}=\widehat{BAD}=\frac{1}{2}sđ\widebat{BD}\\\widehat{DMC}=\widehat{DAC}=\frac{1}{2}sđ\widebat{CD}\end{cases}}\)
mà \(\widehat{BAD}=\widehat{DAC}=\frac{1}{2}\widehat{BAC}\)
=> \(\widehat{BMD}=\widehat{DMC}\)
=> MD là phân giác góc BMC
b) Ta có: \(\widehat{BMC}=2\widehat{MBE}\)( cùng bù \(\widehat{BME}\))
<=> \(2\widehat{BMD}=2\widehat{MBE}\)
=> \(\widehat{BMD}=\widehat{MBE}\left(SLT\right)\)
=> BE song song MD
=> BE song song MI
c) Ta có: \(\widehat{MCD}=\frac{\widebat{BM}+\widebat{BD}}{2}=\widehat{DKC}\)(1)
Mặt khác: \(\widehat{DIC}=\frac{\widebat{BM}+\widebat{DC}}{2}\)(2)
Từ (1),(2) => \(\widehat{DIC}=\widehat{DKC}\)( \(\widebat{BD}=\widebat{DC}\))
=> DCKI nội tiếp
Gọi đường tròn đó cắt cạnh AB tại G khác B. Vì \(\Delta\)ABC cân tại A nên GD // BC.
Dựng hình bình hành AEFD. Khi đó DF // AE // BC. Suy ra F,D,G thẳng hàng, từ đây ^KDF = ^KBG (1)
Ta có ^DBK = ^DCK = ^ECA và ^DKB = ^DCB = ^EAC, suy ra \(\Delta\)BKD ~ \(\Delta\)CAE (g.g)
Suy ra \(\frac{KD}{DF}=\frac{KD}{AE}=\frac{KB}{AC}=\frac{KB}{BA}\), kết hợp với (1) ta được \(\Delta\)DKF ~ \(\Delta\)BKA (c.g.c)
Từ đó \(\Delta\)KFA ~ \(\Delta\)KDB (c.g.c). Do vậy ^KAF = ^KBD = ^KCD = ^KEF
Suy ra ^AKE = ^AFE = ^DAF = ^MAD (Vì A,M,F thẳng hàng) (đpcm).