Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xet ΔBCD có
M,N lần lượtlà trung điểm của BC,CD
nên MN là đường trung bình
=>MN//BD và MN=BD/2
Xét ΔEBD có EP/ED=EQ/EB
nên PQ//BD và PQ/BD=EP/ED=1/2
=>MN//PQ và MN=PQ
Xét ΔDEC có DP/DE=DN/DC
nên PN//EC và PN=1/2EC
=>PN=1/2BD=PQ
Xét tứ giác MNPQ có
MN//PQ
MN=PQ
PN=PQ
=>MNPQ là hình thoi
b: NP//AC
=>góc QPN=góc BAC
=>góc NMP=góc EAF
=>PM//AF
c: Xét ΔAIK có
AF vừa là đường cao, vừa là phân giác
nên ΔAIK cân tại A
Dễ thôi
ta có\(\Delta HBE\infty\Delta ABF\)(\(\widehat{BHE}=\widehat{BAF}=90^0\);\(\widehat{EBH}=\widehat{ABF}\))
\(\Rightarrow\widehat{BEH}=\widehat{AFB}\)
Lại có:\(\widehat{BEH}=\widehat{AEF}\)
\(\Rightarrow\widehat{AFE}=\widehat{AEF}\)
Vậy tam giác AEF cân tại A
Xét ΔBNC có
NF là phân giác
nên BF/FC=BN/NC=BN/NA(1)
Xét ΔBNA có NE là phân giác
nên BE/EA=BN/NA(2)
Từ (1) và (2) suy ra BF/FC=BE/EA
hay FE//AC
áp dụng t/c đường phân giác vào tam giác AMB có :
\(\dfrac{ME}{AB}=\dfrac{AM}{MB}\left(1\right)\)
áp dụng t/c đường phân giác vào tam giác AMC có :
\(\dfrac{MF}{AC}=\dfrac{AM}{MC}\left(2\right)\)
mà AB = AC ; MB=MC
từ (1) và (2) suy ra : ME= MF (đpcm)
Xét ΔCAB có AE là phân giác
nên CE/EB=CA/AB=CB/AB(1)
Xét ΔCBA có BF là phân giác
nên CF/FA=CB/AB(2)
Từ (1) và (2) suy ra CE/EB=CF/FA
hay FE//AB