K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2022

Áp dụng định lý pitago vào tam giác vuông ABC, có:

\(BC^2=AB^2+AC^2\)

\(\Rightarrow BC=\sqrt{6^2+8^2}=\sqrt{100}=10cm\)

b.Xét tam giác vuông ABH và tam giác vuông ADH, có:

HD = HB ( gt )

AH: cạnh chung

Vậy tam giác vuông ABH = tam giác vuông ADH ( 2 cạnh góc vuông )

=> AB = AD ( 2 cạnh tương ứng )

18 tháng 3 2021

a)áp dụng định lý Py-Ta-Go cho ΔABC vuông tại A 

ta có:

BC2=AB2+AC2

BC2=62+82

BC2=36+64=100

⇒BC=\(\sqrt{100}\)=10

vậy BC=10

AB và AC không bằng nhau nên không chứng minh được bạn ơi

còn ED và AC cũng không vuông góc nên không chứng minh được luôn 

Xin bạn đừng ném đá

Bài làm

a) Xét tam giác ABH vuông tại H có:

Theo định lí Pytago có:

AB2 = AH2 + HB2 

hay AB2 = 62 + 42 

=> AB2 = 36 + 16

=> AB2 = 52

=> AB = \(2\sqrt{13}\) \(\approx\)7,2 ( cm )

b) Xét tam giác AHC vuông ở H có:

Theo định lí Pytago có: 

AC2 = AH2 + HC2 

Hay AC2 = 62 + 92 

=> AC2 = 36 + 81

=> AC2 = 117

=> AC = \(3\sqrt{13}\)\(\approx\)10,8 ( cm )

Ta có: BC = 9 + 4 = 13

=> BC2 = 132 = 169 

AB2 + AC2 = \(\left(2\sqrt{13}\right)^2+\left(3\sqrt{13}\right)^2=52+117=169\)

=> BC2 = AB2 + AC2 

=> Tam giác ABC vuông tại A ( Theo định lí Pytago đảo )

c) Vì DE song song với AH

Theo định lí Thalets có:

\(\frac{CH}{HD}=\frac{AC}{AE}\)

hay \(\frac{9}{6}=\frac{3\sqrt{13}}{AE}\)

=> AE = \(\frac{6.3\sqrt{13}}{9}=\frac{18\sqrt{13}}{9}=2\sqrt{13}\)

Mà AB = \(2\sqrt{13}\)

=> AE = AB ( = \(2\sqrt{13}\)) ( đpcm )

30 tháng 6 2021

\(\dfrac{1}{2}\) AB.AB là sao ạ??

26 tháng 4 2021

b) xét tam giác ABH và tam giác AHC có:AH chung,AHB=AHC=90*,AB=AC => tam giác ABH = tam giác AHC => HB=HC

a) BH+HC=BC và BH=HC => BH=1/2BC=1/2x6=3

=>AH2=AB2-BH2=52-32=4

c) lấy M là trung điểm của AC                                                                            AH cắt BM=G => G là trọng tâm của tam giác=>AG/AH=2/3

Mình ko biết làm d nhé

26 tháng 4 2021

đúng nha

 

12 tháng 7 2018

a, Xét t/g AHC và t/g DHC có:

AH = DH (gt)

góc AHC = góc DHC = 90 độ

HC chung

=> t/g AHC = t/g DHC (c.g.c) (đpcm)

b, Áp dụng định lí pytago vào t/g ABC vuông tại A ta có:

AB2 + AC2 = BC2

=> AC2 = BC2 - AB2 = 102 - 62 = 64 = 82

=> AC = 8 (cm)

c, Xét t/g AHB và t/g DHE có:

AH = DH (gt)

góc AHB = góc DHE (đối đỉnh)

BH = EH (gt)

=> t/g AHB = t/g DHE (c.g.c) (đpcm)

=> góc HBA = góc DEH (2 góc tương ứng)

Mà 2 góc này nằm ở vị trí so le trong

=> AB // DE 

Mà AB _|_ AC

=> DE _|_ AC (đpcm)

d, Vì t/g AHC = t/g DHC (câu a) => AC = CD (2 cạnh tương ứng) (1)

Xét t/g AHB và t/g AHE có:

BH = BE (gt)

góc AHB = góc AHE = 90 độ

AH chung

=> t/g AHB = t/g AHE (c.g.c)

=> AB = AE (2 cạnh tương ứng) (2)

Xét t/g ABC có: AB + AC > BC (BĐT tam giác) (3)

Từ (1),(2),(3) =>  AE + CD > BC (đpcm)

22 tháng 3 2021

undefined

5 tháng 2 2022

phạm duy ơi câu c là 2 cạnh góc vuông đúng ko 

26 tháng 4 2016

a / BC2 = AB2 + AC

26 tháng 4 2016

a) xét tam giac ABC vuông tại A ta có

BC2= AB2+AC2 (định lý pitago)

BC2=62+82

BC2=100

BC=10

b) Xét tam giac ABH và tam giac ADH ta có

HB=HD (gt)

AH=AH (cạnh chung)

góc AHB= góc AHD (=90)

-> tam giác ABH= tam giac ADH (c-g-c)

-> AB= AD ( 2 cạnh tương ứng)

c) 

Xét tam giac ABHvà tam giac EDH ta có

HB=HD (gt)

AH=EH (gt)

góc AHB= góc EHD (=90)

-> tam giác ABH= tam giac EDH (c-g-c)

-> góc ABH = góc EDH (2 góc tương ứng )

mà 2 góc  nằm ở vị trí sole trong

nên AB// ED

lại có AB vuông góc AC ( tam giac ABC vuông tại A)

do đó ED vuông góc AC

giúp mình với

 

a: góc ABH=90-65=25 độ

b: Xét ΔCBD có

CH vừa là đường cao, vừa là trung tuyến

nên ΔCBD cân tại C

=>CH là phân giác của góc BCD