K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2018

(Bạn tự vẽ hình giùm)

a/ \(\Delta HAB\)vuông và \(\Delta HCB\)vuông có: AB = CB (\(\Delta ABC\)cân tại A)

Cạnh HB chung

=> \(\Delta HAB\)vuông = \(\Delta HCB\)vuông (cạnh huyền - cạnh góc vuông) => HA = HC (hai cạnh tương ứng)

b/ \(\Delta AHD\)vuông và \(\Delta CHE\)vuông có: HA = HC (cm câu a)

\(\widehat{A}=\widehat{C}\)(\(\Delta ABC\)cân tại A)

=> \(\Delta AHD\)vuông = \(\Delta CHE\)vuông (cạnh huyền - góc nhọn) => HD = HE (hai cạnh tương ứng)

c/ Ta có \(\Delta AHD\)\(\Delta CHE\)(cm câu b) => AD = CE (hai cạnh tương ứng) (1)

và AB = AC (\(\Delta ABC\)cân tại A) (2)

Lấy (2) trừ (1) => AB - AD = AC - CE

=> BD = BE => \(\Delta BDE\)cân tại B

4 tháng 3 2018

B A C H D E

27 tháng 3 2022
 

Đề thi Giữa kì 2 Toán lớp 7 có đáp án (Đề 3)

Đề thi Giữa kì 2 Toán lớp 7 có đáp án (Đề 3)

Chứng minh

a) Xét tam giác AHB và tam giác AHC có:

Đề thi Giữa kì 2 Toán lớp 7 có đáp án (Đề 3)

27 tháng 3 2022

b) có tam giác ABC cân tại A

=> AB=AC

có BC=BH+HC

=> BC=12:2=6(cm)

=> BH=6;HC=6

có tam giác AHC

=> áp dụng định lí pytago có 

=>AH2+HC2=AC2

=>82+62=AC2

=>AC2=102

=>AC=10

a) Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)

⇔BH=CH(hai cạnh tương ứng)

b) Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(BH^2+AH^2=AB^2\)

\(\Leftrightarrow BH^2=AB^2-AH^2=5^2-4^2=9\)

hay BH=3(cm)

Vậy: BH=3cm

c) Ta có: ΔABH=ΔACH(cmt)

nên \(\widehat{BAH}=\widehat{CAH}\)(hai góc tương ứng)

hay \(\widehat{DAH}=\widehat{EAH}\)

Xét ΔDAH vuông tại D và ΔEAH vuông tại E có

AH chung

\(\widehat{DAH}=\widehat{EAH}\)(cmt)

Do đó: ΔDAH=ΔEAH(cạnh huyền-góc nhọn)

Suy ra: AD=AE(hai cạnh tương ứng)

Xét ΔADE có AD=AE(cmt)

nên ΔADE cân tại A(Định nghĩa tam giác cân)

9 tháng 5 2021

a) Chứng minh HB=HC:                                                                              Xét ΔAHB và ΔAHC có:                                                                         ∠AHB=∠AHC=90(độ)                                                                                   AH cạnh chung                                                                                             AB=AC(gt)                                                                                                     ⇒ ΔAHB = ΔAHC (ch-cgv)  ⇒ HB=HC (2 cạnh tương ứng)

b) Ta có: HB=HC=BC/2=6/2=3(cm)                                                              Ta có: ΔAHB vuông tại H.                                                                              ⇒ AH(mũ 2)+BH(mũ 2)=AB(mũ 2) ⇒ AH(mũ 2)=AB(mũ 2)-BH(mũ 2)          =4(mũ 2)-3(mũ 2)=16-9=7 ⇒ AH=√7(cm) 

c)                                                                                                                  Ta có: ΔAHB = ΔAHC ⇒ ∠BAH=∠CAH                                                      Xét ΔAHD và ΔAHE có:                                                                              ∠D=∠E=90(độ)                                                                                          AH cạnh chung                                                                                             ∠BAH=∠CAH (gt)                                                                                        ⇒ ΔAHD = ΔAHE (ch-gn) ⇒ DH=EH ⇒ ΔHDE cân tại H. A B C H D E

                                                                                                  

10 tháng 5 2021

Cảm ơn bạn

 

10 tháng 3 2020

hình chắc có rồi

tam giác BEH vuông tại E => BE^2 + HE^2 = BH^2 (pytago)

HE = DH  (câu b)

=> BE^2 + HD^2 = BH^2   (1)

Tam giác BHC vuông tại H => BH^2 = BC^2 - HC^2 (pytago)

HC = HA (Câu a)

=> BH^2 = HC^2 - AH^2  và (1)

=> BE^2 + DH^2 = BC^2 - AH^2

a) Xét ΔABH và ΔCBH có :

AHBˆ=CHBˆ=90oAHB^=CHB^=90o

BA = BC ( ΔABC cân ở A )

Aˆ=CˆA^=C^ ( ΔABC cân ở B )

=> ΔABH = ΔCBH ( c.h-g.n )

=> HA = HC ( 2 cạnh tương ứng )

b) Do ΔABH = ΔCBH ( c/m a )

=> ABHˆ=CBHˆABH^=CBH^ ( 2 góc tương ứng )

hay DBHˆ=EBHˆDBH^=EBH^

+) ΔBDH và ΔBEH có :

BDHˆ=BDHˆ=90oBDH^=BDH^=90o

DBHˆ=EBHˆ(cmt)DBH^=EBH^(cmt)

BH là cạnh chung

=> ΔBDH = ΔBEH ( c.h-g.n )

=> HE = HD ( 2 cạnh tương ứng )

c) Do ΔBDH = ΔBEH ( c/m b )

=> BD = BE ( 2 cạnh tương ứng )

=> ΔBDE cân ở B

d) Do ΔBHE vuông ở E ; áp dụng định lí Pi-ta-go , ta có :

BE2 + HE2 = BH2

Mà HE = HD (c/m b )

=> BE2 + HD= BH2 (*)

+) Mặt khác , ΔBCH vuông ở H , áp dụng định lí Pi-ta-go , ta có :

BC= BH2 + HC2

=> BC2HC2=BH2BC2−HC2=BH2

mà HC = HA ( c/m a )

=> BC2HA2=BH2BC2−HA2=BH2 (**)

Từ (*) và (**)

=>  BE2+HD2=BC2HA2(=BH2)BE2+HD2=BC2HA2(=BH2)

6 tháng 2 2022

a.ta có trong tam giác cân ABC đường cao cũng là đường trung tuyến => HB = HC

b.áp dụng định lý pitago ta có:

\(AB^2=AH^2+HB^2\)

\(5^2=AH^2+\left(8:2\right)^2\)

\(AH=\sqrt{5^2-4^2}=3cm\)

c.Xét tam giác vuông BHD và tam giác vuông CHE, có:

BH = CH ( cmt )

góc B = góc C ( ABC cân )

Vậy tam giác vuông BHD = tam giác vuông CHE 

=> HD = HE 

=> HDE cân tại H

d.ta có AB = AD + DB

           AC = AE + EC

Mà BD = CE ( 2 cạnh tương ứng của 2 tam giác bằng nhau )

=> AD = AE 

=> ADE cân tại A
Mà A là đường cao cũng là đường trung trực trong tam giác cân ABC cũng là đường trung trực của tam giác cân ADE ( cmx )

Chúc bạn học tốt !!!!