Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔBKC vuông tại K và ΔCHB vuông tại H có
BC chung
\(\widehat{KBC}=\widehat{HCB}\)(ΔABC cân tại A)
Do đó: ΔBKC=ΔCHB(cạnh huyền-góc nhọn)
Suy ra: BK=CH(hai cạnh tương ứng)
b) Xét ΔAIC vuông tại I và ΔBHC vuông tại H có
\(\widehat{BCH}\) chung
Do đó: ΔAIC\(\sim\)ΔBHC(g-g)
Suy ra: \(\dfrac{CA}{CB}=\dfrac{CI}{CH}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(CA\cdot CH=CB\cdot CI\)(đpcm)
a)Hai tam giác vuông \(\Delta AHC\approx\Delta BKC\)vì có chung góc nhọn C
b) Vì tam giác AHC đồng dạng tam giác BKC nên
\(\frac{AH}{BK}=\frac{HC}{KC}=\frac{AC}{BC}=\frac{4}{3}\)
Theo định lý Pytago ta có
\(AH=\sqrt{8^2-3^2}=\sqrt{55}\)
\(\frac{AH}{BK}=\frac{\sqrt{55}}{BK}=\frac{4}{3}\)
\(\Rightarrow BK=\frac{3\sqrt{55}}{4}\)
Theo Pytago ta có
\(KC=\sqrt{6^2-\left(\frac{3\sqrt{55}}{4}\right)^2}=\frac{9}{4}\left(cm\right)\)
\(KA=8-\frac{9}{4}=\frac{23}{4}\left(cm\right)\)
a/ \(BC=\sqrt{AB^2+AC^2}=10cm\)
BK là pg \(\widehat{ABC}\)
\(\Rightarrow\dfrac{AK}{CK}=\dfrac{AB}{BC}=\dfrac{6}{10}=\dfrac{3}{5}\)
=> \(\dfrac{AK}{3}=\dfrac{CK}{5}=\dfrac{AC}{8}=1\)
=> AK = 3cm ; CK = 5 cm
b/ Xét t/g ABC và t/g HBA có
\(\widehat{ABC}\) chung
\(\widehat{BAC}=\widehat{AHB}=90^o\)
=> t/g ABC ~ t/g HBA
=> \(\dfrac{AB}{HB}=\dfrac{BC}{AB}\)
=> \(AB^2=BC.HB\)
c/ \(\dfrac{BC}{AC}=\dfrac{10}{6}=\dfrac{5}{3}\)
t/g ABC ~ t/g HBA vs tỉ số đồng dạng là 5/3
a, tg ABC cân tại A (gt) => ^ABC = ^ACB (tc)
xét tg HCB và tg KBC có : BC chung
^CHB = ^BKC = 90
=> tg ABC = tg KBC (ch-gn)
=> CH = BK (đn)
=> CH/AB = BK/AB mà AB = AC do tam giác ABC cân tại A (Gt)
=> CH/AC = BK/AB
=> HK // BC (đl)
b, sửa đề thành HC.AC = BC.IC
xét tg CHB và tg CIA có : ^ACB chung
^CHB = ^AIC = 90
=> tg CHB đồng dạng với tg AIC (g-g)
=> HC/BC = IC/AC (đn) => HC.AC = BC.IC
c, tg ABC cân tại A (Gt) mà AI là đường cao (gt)
=> AI đồng thời là đtt (đl) => IB = IC = 1/2 BC
mà có : HC.AC = BC.IC (Câu b) ; BC = a; AC = b
=> HC.b = a.a/2 => BC = a^2/2b
Có AH = AC - HC
=> AH = b - a^2/2b = (2b^2 - a^2)/2b
mà HK // BC (câu a) nên
AH/AC = HK/BC => HK = AH.BC/AC = a/b.(2b^2 - a^2)/2b
=> HK = (2ab^2 - a^3)/2b^2 = a - a^3/2b^2
đề có vấn đề đấy bạn, ABC cân A thì AB =AC =12 cm chứ sao AC =16cm đc nhỉ
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
DO đó: ΔHBA∼ΔABC
b: \(BC=\sqrt{AB^2+AC^2}=20\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{12\cdot16}{20}=9.6\left(cm\right)\)
a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
góc C chung
Do đó: ΔABC\(\sim\)ΔHAC
b: Ta có: ΔABC\(\sim\)ΔHAC
nên AC/HC=BC/AC
hay \(AC^2=BC\cdot HC\)
c: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
a, Xét Δ ABC và Δ HAC, có :
\(\widehat{ACB}=\widehat{HCA}\) (góc chung)
\(\widehat{BAC}=\widehat{AHC}=90^o\)
=> Δ ABC ∾ Δ HAC (g.g)
b, Ta có : Δ ABC ∾ Δ HAC (cmt)
=> \(\dfrac{AC}{HC}=\dfrac{BC}{AC}\)
=> \(AC^2=BC.HC\)
c, Xét Δ ABC, có :
\(BC^2=AB^2+AC^2\) (định lí Py - ta - go)
=> \(BC^2=3^2+4^2\)
=> \(BC^2=25\)
=> \(BC=5\left(cm\right)\)
b) Xét ΔBKC vuông tại K và ΔCHB vuông tại H có
\(\widehat{KBC}=\widehat{HCB}\)(ΔBAC cân tại A)
Do đó: ΔBKC\(\sim\)ΔCHB(g-g)
a) Áp dụng định lí Pytago vào ΔBKC vuông tại K, ta được:
\(BC^2=BK^2+CK^2\)
\(\Leftrightarrow CK^2=BC^2-BK^2=5^2-3^2=16\)
hay CK=4(cm)
Diện tích tam giác BKC là:
\(S_{BKC}=\dfrac{BK\cdot KC}{2}=\dfrac{3\cdot4}{2}=\dfrac{12}{2}=6\left(cm^2\right)\)
(Tự vẽ hình)
a) Xét \(\Delta AHB\) và \(\Delta CAB\) có:
\(\widehat{AHB}=\widehat{CAB}=90^0\)
\(\widehat{B}\) chung
\(\Rightarrow\Delta AHB\sim\Delta CAB\) (g.g)
b) Áp dụng định lý Pytago có:
\(BC^2=AB^2+AC^2=8^2+6^2=100\Rightarrow BC=10\left(cm\right)\)
Do \(\Delta AHB\sim\Delta CAB\Rightarrow\left\{{}\begin{matrix}\dfrac{AH}{AC}=\dfrac{AB}{BC}\Rightarrow AH=\dfrac{AB.AC}{BC}=4,8\left(cm\right)\\\dfrac{BH}{AB}=\dfrac{AB}{BC}\Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\end{matrix}\right.\)
c) Xét \(\Delta AHB\) và \(\Delta CHA\) có:
\(\widehat{AHB}=\widehat{CHA}=90^0\)
\(\widehat{ABH}=\widehat{CAH}\) (cùng phụ \(\widehat{BAH}\))
\(\Rightarrow\Delta AHB\sim\Delta CHA\) (g.g) \(\Rightarrow\dfrac{AH}{BH}=\dfrac{CH}{AH}\Rightarrow AH^2=BH.CH\)
a) Xét tam giác BKC và CHB có:
góc B= góc C (tính chất tam giác cân)
góc BKC = góc BHC = 90 độ
=> Tam giác BKC đồng dạng tam giác CHB
=> \(\frac{BK}{CH}=\frac{BC}{BC}=1=k\)
b) Tam giác BHA đồng dạng tam giác CKA (g-g)
=> \(\frac{HA}{AK}=\frac{BA}{AC}=1\)
=> \(\frac{AK}{AB}=\frac{AH}{AC}\)
=> KH//BC (Định lí Ta - lét đảo)
c) Ta có theo hệ quả Ta-let:
\(\frac{AK}{AB}=\frac{KH}{BC}=>\frac{AK}{b}=\frac{KH}{a}=>KH=\frac{a.AK}{b}\)
Ta có: AK2+KC2=b2 (1)
KC2+KB2=a2 => KC2+(b-AK)2=a2 =>KC2-2b.AK+AK2=a2 (2)
Trừ 2 cho 1, ta có: -2b.AK=a2-b2 =>\(AK=\frac{a^2-b^2}{-2b}\)
Từ đó => \(KH=\frac{a\times\frac{a^2-b^2}{-2b}}{b}\)