Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABM vuông tại M và ΔACN vuông tại N có
AB=AC
\(\widehat{BAM}\) chung
Do đó: ΔABM=ΔACN
Suy ra: BM=CN
b: Ta có: ΔABM=ΔACN
nên \(\widehat{ABM}=\widehat{ACN}\)
c: Xét ΔNBC vuông tại N và ΔMCB vuông tại M có
BC chung
NC=MB
Do đó: ΔNBC=ΔMCB
Suy ra: \(\widehat{ICB}=\widehat{IBC}\)
hay ΔIBC cân tại I
d: Ta có: AB=AC
nên A nằm trên đường trung trực của BC(1)
Ta có: IB=IC
nên I nằm trên đường trung trực của BC(2)
Ta có: KB=KC
nên K nằm trên đường trung trực của BC(3)
Từ (1), (2) và (3) suy ra A,K,I thẳng hàng
1:
Xét ΔBAC có
BM,CN là trung tuyến
BM cắt CN tại G
=>G là trọng tâm
=>BG=2/3BM và CG=2/3CN
BG+CG>BC
=>2/3BM+2/3CN>BC
=>2/3(BM+CN)>BC
=>BM+CN>3/2BC
2:
BF=2BE
=>EF=BE
=>EF=2ED
=>D là trung điểm của EF
Xét ΔFEC có
CD,EK là trung tuyến
CD cắt EK tại G
=>G là trọng tâm
b: G là trọng tâm của ΔFEC
=>GE/GK=1/2 và GC/DC=2
hình minh họa thôi nhé
trong △ABC có :
BM là đường trung tuyến thứ nhất
CN là đường trung tuyến thứ hai
Mà hai đường này cắt nhau tại G
=> G là trọng tâm của △ABC
=> AG là đường trung tuyến thứ ba của △ABC
Lại có : △ABC cân tại A
=> AG cũng là đường p/g của △ABC
=> AG là tia p/g của góc BAC
=> AE là tia p/g của góc BAC ( vì E ∈ AG )