K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2016

phần a dễ quá em tự giải nhé.

phần b: góc AMB = góc AMC (1) ( vì tam giác ABM = tam giác ACM)

Ta lại có : góc AMB + góc AMC = 180 độ (2)    ( 2 góc kề bù )

từ (1) và (2) suy ra : góc AMB = góc AMC = 90 độ 

Phần c. Áp dụng định lí Pytago cho tam giác vuông ABM tính ra AM = 12 cm 

a: Xét ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC

=>ΔAMB=ΔAMC

b: BM=CM=3cm

=>AM=4cm

c: Xét ΔHBC có

HM vừa là đường cao, vừa là trung tuyến

=>ΔHBC cân tại H

11 tháng 5 2022

refer

a) Vì AH là đường trung tuyến của tam giác ABC cân tại A:

nên HB=HC

 Xét tam giác AHB và tam giác AHC:

có:+AB=AC( tam giác ABC cân tại A)

      +HB=HC(cmt)

      +AH: cạnh chung

Vậy tam giác AHB=tam giác AHC(c.c.c)

b) Vì tam giác AHB=tam giác AHC(cmt)

nên: góc AHB=góc AHC=90 độ( 2 góc tương ứng )

c) HB=HC=BC2=102=5cmHB=HC=BC2=102=5cm

Áp dụng định lí Pytago vào tam giác ABH vuông tại H:

có: AB2=AH2+BI2AB2=AH2+BI2

hay:132=AH2+52132=AH2+52

⇒AH2=132−52⇒AH2=132−52

⇔AH=√132−52=12⇔AH=132−52=12

Vậy AH=12cm

 

 

 

 

11 tháng 5 2022

a, Xét Δ AHB và Δ AHC, có :

AH là cạnh chung

AB = AC (Δ ABC cân tại A)

HB = HC (AH là đường trung tuyến của BC)

=> Δ AHB = Δ AHC (c.c.c)

b, Xét Δ ABC cân tại A, có :

AH là đường trung tuyến

=> AH là đường cao

=> \(\widehat{AHC}=\widehat{AHB}=90^o\)

c, đề kì dzậy

a: Xét ΔABM và ΔACM có

AB=AC

BM=Cm

AM chung

=>ΔABM=ΔACM

b: ΔABC cân tại A

mà AM là trung tuyến

nên AM vuông góc BC

c: BM=CM=5cm

=>AM=12cm

=>AG=8cm

10 tháng 5 2019

a,XétΔABM và ΔACM có :

^AMB=^AMC(=90o)

AB=AC(GT)

AM :cạnh chung(gt)

Suy ra:ΔABM= ΔACM (ch-cgv)

=>MB=MC( 2 cạnh tương ứng)

b,Ta có MB=BC2 =242 = 12

Δ AMB vuông tại M có :

AM2+BM2=AB2 ( đl Pytago)

=>AM2=AB2−BM2

202−122

162

=>AM=16

26 tháng 4 2020

A B C M

a) Xét t/giác ABM và t.giác ACM

có: AB = AC (gt)

AM : chung

BM = MC (gt)

=> t/giác ABM = t/giác ACM (c.c.c)

=> \(\widehat{AMB}=\widehat{AMC}\) (2 góc t/ứng)

Mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(kề bù)

=> \(\widehat{AMB}=\widehat{AMC}=90^0\)

=> AM vuông góc với BC

b) Ta có: BM = MC = 1/2BC = 1/2.32 = 16 (cm)

Áp dụng định lí Pi - ta - go vào t/giác ABM vuông tại M, ta có:

\(AB^2=AM^2+BM^2\)

=> AM2 = AB2 - BM2 = 342 - 162 = 900

=> AM = 30 (cm)

c) Chu vi t/giác AMB = 34 + 16 + 30 = 80 (cm)

Diện tích t/giác ABM là: 30 x 16 : 2 = 240 (cm2)

15 tháng 4 2021

Dễ và cơ bản mà nhỉ:vv

a) Xét ∆ABM và ∆ACM:

AB=AC (∆ABC cân tại A)

BM=CM (AM là trung tuyến)

\(\widehat{ABM}=\widehat{ACM}\) (∆ABC cân tại A)

=> ∆ABM=∆ACM (c.g.c)

b) Theo câu a: ∆ABM=∆ACM 

=> \(\widehat{AMB}=\widehat{AMC}\)

Mà \(\widehat{AMB}+\widehat{AMC}=180^o\) (2 góc kề bù)

=> \(\widehat{AMB}=\widehat{AMC}=90^o\)

=> AM vuông góc với BC

c) M là trung điểm của BC

=> \(MB=MC=\dfrac{BC}{2}=\dfrac{6}{2}=3\)

Áp dụng định lý Py-ta-go vào ∆ABM, ta có:

\(AB^2=AM^2+BM^2\)

\(\Leftrightarrow5^2=AM^2+3^2\Rightarrow AM^2=5^2-3^2=16=4^2\)

\(\Rightarrow AM=4\) (cm)

Vậy AM=4cm.

b) Cm theo cách khác:

Ta có: AB=AC(ΔABC cân tại A)

nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: MB=MC(M là trung điểm của BC)

nên M nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra AM là đường trung trực của BC

hay AM\(\perp\)BC(đpcm)