Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì ∆ABC cân tại A
=> ABC = ACB
Mà DE // BC (gt)
=> EDCB là hình thang
=> EDCB là hình thang cân
b) Nối C => E
Vì ED//BC (gt)
=> DEC = ECB ( so le trong)
Rồi chứng minh cho CE là phân giác ACB
=> ACE = BCE mà DEC = ECB
=> DEC = DCE
=> ∆DEC cân tại D
=> DE = DC
Mà hình thang EDCB cân
=> EB =DC
=> EB = ED (dpcm)
Tự vẽ hình chỉ bt làm ý a,c, thôi thông cảm T^T
a,Xét ΔHAB và ΔABC
\(\widehat{BHA}=\widehat{BAH}=90^o\)
Góc B chung
\(\Rightarrow\Delta HBA\text{∼ }\Delta ABC\)
c,Xét ΔABC ta có:
BC2=AC2+AB2
BC2=162+122
BC2=400
BC=√400=20cm
Ta có ΔHAB~ΔABC(câu a)
\(\Rightarrow\frac{AH}{AC}=\frac{AB}{BC}\Leftrightarrow\frac{AH}{16}=\frac{12}{20}\)
\(\Rightarrow AH=\frac{12.16}{20}=9,6cm\)
a.Xét \(\Delta HBA\)và \(\Delta ABC\)có
\(\widehat{BHA}=\widehat{BAC}=90^0\)
\(\widehat{B}\) chung
Do đó \(\Delta HBA\)đồng dạng \(\Delta ABC\)\((\)g.g\()\)
b.Từ \(\Delta HBA\)đồng dạng \(\Delta ABC\)
\(\Rightarrow\frac{AH}{AC}=\frac{AB}{BC}\)
\(\Rightarrow AH.BC=AB.AC\)
c.Xét \(\Delta ABC\),có \(\widehat{A}\)=90 độ , theo định lý py -ta -go,ta có
\(BC^2=AB^2+AC^2\)
\(BC^2=12^2+16^2\)
\(BC^2=400\)\(\Rightarrow BC=\sqrt{400}\)
\(BC=20cm\)
Ta có \(\frac{AH}{AC}=\frac{AB}{BC}\Leftrightarrow\frac{AH}{16}=\frac{12}{20}\)
\(\Rightarrow AH=\frac{12\times16}{20}\)
\(\Rightarrow AH=9,6cm\)
Chúc bạn học tốt.Phần d mình chưa giải đc nha
a) Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A ta được:
\(AB^2+AC^2=BC^2\)
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)
Xét tam giác ABC có AD là đường phân giác trong của tam giác ABC (gt)
\(\Rightarrow\frac{BD}{DC}=\frac{AB}{AC}\left(tc\right)\)
\(\Rightarrow\frac{BD}{DC}=\frac{3}{4}\)
\(\Rightarrow\frac{BD}{3}=\frac{DC}{4}=\frac{BD+DC}{3+4}\frac{10}{7}\)(tính chất của dãy tỉ số bằng nhau )
\(\Rightarrow\hept{\begin{cases}BD=\frac{10}{7}.3=\frac{30}{7}\left(cm\right)\\DC=\frac{10}{7}.4=\frac{40}{7}\left(cm\right)\end{cases}}\)
b)Ta có: \(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}AH.BC\)
\(\Rightarrow AB.AC=AH.BC\left(đpcm\right)\)
c) Xét tam giác ADB có DE là đường phân giác trong của tam giác ADB(gt)
\(\Rightarrow\frac{EA}{EB}=\frac{AD}{BD}\left(tc\right)\)
Xét tam giác ADC có DF là đường phân giác trong của tam giác ADC (gt)
\(\Rightarrow\frac{FC}{FA}=\frac{DC}{DA}\left(tc\right)\)
\(\Rightarrow\frac{EA}{EB}.\frac{DB}{DC}.\frac{FC}{FA}=\frac{AD}{BD}.\frac{DB}{DC}.\frac{DC}{DA}=1\left(đpcm\right)\)
\(\frac{1}{b}+\frac{1}{c}=\frac{1}{d}\Leftrightarrow\frac{b+c}{bc}=\frac{1}{d}\Leftrightarrow d=\frac{bc}{b+c}\)
Ta có
\(HD\perp AB;AC\perp AB\) => HD//AC \(\Rightarrow\frac{BD}{BC}=\frac{HD}{AC}=\frac{d}{b}\Rightarrow d=\frac{b.BD}{BC}\) (*)
Xét tg ABC có AD là phân giác của \(\widehat{A}\) nên
\(\frac{BD}{AB}=\frac{CD}{AC}\) (Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn tỉ lệ với hai cạnh kề của hai đoạn ấy)
\(\Rightarrow\frac{BD}{c}=\frac{CD}{b}=\frac{BD+CD}{b+c}=\frac{BC}{b+c}\Rightarrow BC=\frac{BD.\left(b+c\right)}{c}\) Thay vào (*)
\(d=\frac{b.BD}{\frac{BD.\left(b+c\right)}{c}}=\frac{b.BD.c}{BD.\left(b+c\right)}=\frac{bc}{b+c}\Leftrightarrow\frac{1}{b}+\frac{1}{c}=\frac{1}{d}\left(dpcm\right)\)
Hình bạn tự vẽ nhá !!
Xét \(\Delta BEC\) và \(\Delta CDB\) có :
\(\widehat{EBC}=\widehat{DCB}\left(gt\right)\); \(BC\)chung; \(\widehat{DBC}=\widehat{ECB}\left(=\frac{1}{2}\widehat{ABC}=\frac{1}{2}\widehat{ACB}\right)\)
\(\Rightarrow\Delta BEC=\Delta CDB\) \(\left(g-c-g\right)\)\(\Rightarrow BE=CD\)
Do đó \(\frac{BE}{AB}=\frac{CD}{AC}\) theo định lý Ta lét đảo \(\Rightarrow DE//BC\)
\(\Rightarrow\widehat{DBC}=\widehat{EDB}=\widehat{EBD}\) (SLT)
\(\Rightarrow\Delta BED\) cân tại \(E\) \(\Rightarrow DE=BE=c\)
Do DE//BC ta có : \(\frac{DE}{BC}=\frac{AE}{AB}\) (ĐL Talét) (1) Và \(\frac{DE}{AB}=\frac{BE}{AB}\) (2)
Cộng vế với vế của (1) và (2) ta được : \(\frac{DE}{BC}+\frac{DE}{AB}=\frac{AE}{AB}+\frac{BE}{AB}=\frac{AE+BE}{AB}=\frac{AB}{AB}=1\)
\(\Leftrightarrow DE\left(\frac{1}{AB}+\frac{1}{BC}\right)=1\Rightarrow\frac{1}{AB}+\frac{1}{BC}=\frac{1}{DE}\)
Hay \(\frac{1}{a}+\frac{1}{b}=\frac{1}{c}\) (ĐPCM)
TRẢ LỜI HAY KHÔNG CŨNG KỆ THI XONG RÙI