K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2018

a)   Xét 2 tam giác vuông  \(\Delta EBC\)và      \(\Delta DCB\)có:

      \(BC:\)cạnh chung

      \(\widehat{EBC}=\widehat{DCB}\)  

suy ra:   \(\Delta EBC=\Delta DCB\)    (ch_gn)

\(\Rightarrow\)\(BD=EC\)   (cạnh tương ứng)

b)    \(\Delta ABC\)có   các đường cao  \(BD,EC\)cắt nhau tại   \(H\)

\(\Rightarrow\)\(H\)là trực tâm của   \(\Delta ABC\)

\(\Rightarrow\)\(AH\)là đường cao của   \(\Delta ABC\)

\(\Rightarrow\)\(AH\perp BC\)

c)   \(\Delta ABC\)cân tại   A    có  AH  là đường cao

nên  AH  đồng thời là đường phân giác

\(\Rightarrow\)\(\widehat{EAH}=\widehat{DAH}\)  (đpcm)

a) Xét ΔAEC vuông tại E và ΔADB vuông tại D có 

AC=AB(ΔABC cân tại A)

\(\widehat{BAD}\) chung

Do đó: ΔAEC=ΔADB(cạnh huyền-góc nhọn)

Suy ra: AE=AD(hai cạnh tương ứng)

Xét ΔAED có AE=AD(cmt)

nên ΔAED cân tại A(Định nghĩa tam giác cân)

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC

\(\widehat{BAD}\) chung

Do đó: ΔABD=ΔACE

b: Xét ΔAMH có 

AE là đường cao

AE là đường trung tuyến

Do đó: ΔAMH cân tại A

hay AM=AH(1)

c: Xét ΔANH có

AD là đường cao

AD là đường trung tuyến

Do đó: ΔANH cân tại A

hay AH=AN(2)

Từ (1) và (2) suy ra AM=AN

hay ΔAMN cân tại A

18 tháng 3 2022

Xét tam giácBCE= tam giác CBD (cạnh huyền -mgóc nhọn)

góc ABC = góc ACB ( cân tại A)

BC chung 

==> BD=CE

 

18 tháng 3 2022

b) Tam giác BCE=tam giác CBD chứng minh ở câu a nên 

góc BCE = góc DBC

--> IBC cân tại I

17 tháng 2 2017

TA XÉT 2 TAM GIÁC BDC VÀ TAM GIÁC CEB CÓ

BC LÀ CẠNH HUYỀN CHUNG

GÓC E=GÓC D

EC=BD

=>TAM GIÁC BDC = TAM GIÁC CEB (CH GN)

B,XÉT TAM GIÁC ADB VÀ TAM GIÁC AEC CÓ

GÓC E= GÓC D

A CHUNG

GÓC B=GÓC C

=>TAM GIÁC ADB = TAM GIÁC AEC (GCG)

=>AE=AD=>TAM GIÁC ADE CÂN TẠI A

Xét \(\Delta\)BEC và \(\Delta\)CDB, có:

^ABC=^ACB (\(\Delta\)ABC cân tại A)

BC _ chung

^BEC=^BDC=900

=> \(\Delta\)BEC=\(\Delta\)CDB ( g.c.g )

=> BD=EC

7 tháng 1 2019

a) Xét tam giác BDC và tam giác CEB có:

 Góc B = Góc C ( vì AB = AC => tam giác ABC cân tại A ) 

Góc BDC = Góc CEB ( = 90 độ )

BC : cạnh chung

Do đó : Tam giác BDC = tam giác CEB ( cạnh huyền - góc nhọn )

=> BD = CE ( hai cạnh tương ứng )

b) Xét tam giác 

            

7 tháng 1 2019

c) Ta có AB = AC(gt)

Tam giác BDC = Tam giác CEB ( cm câu a )

=> AE = AD (2 góc tương ứng)

Mà AB - AE = AC - AD

<=> BE = CD (1)

Mặt khác góc BEI = góc CDI (2)

góc EIB = góc DIC ( đđ )

=> góc EBI = góc DCI (3)

Từ (1),(2) và (3) => Tam giác IBE = tam giác  IDC( cạnh góc vuông - góc nhọn kề )

=> IB = IC ( 2 cạnh tương ứng )

=> I nằm trên đường trung trực BC (1)

Ta lại có AB = AC ( gt )

=> A nằm trên đường trung trực của BC (2)

Từ (1) và (2) => Ba điểm A , I , H là ba điểm thẳng hàng ( đpcm )

Tk nhé bạn

27 tháng 1 2022

a) Xét tam giác BCE vuông tại E và tam giác CBD vuông tại D:

BC chung.

Góc B = Góc C (Tam giác ABC cân tại A).

=> Tam giác BCE = Tam giác CBD (cạnh huyền - góc nhọn).

b) Xét tam giác ABD vuông tại D và tam giác ACE vuông tại E:

Góc A chung.

AB = AC (Tam giác ABC cân tại A).

=> Tam giác ABD = Tam giác ACE (cạnh huyền - góc nhọn).

=> Góc ABD = Góc ACE (2 góc tương ứng).

Xét tam giác BEK và tam giác CDK:

Góc EBK = Góc DCK (Góc ABD = Góc ACE).

BE = CD (Tam giác BCE = Tam giác CBD).

Góc BEK = Góc CDK (= 90o).

=> Tam giác BEK = Tam giác CDK (g - c - g).

c) Xét tam giác ABC:

BD là đường cao (BD vuông góc với AC).

CE là đường cao (CE vuông góc với AB).

BD cắt CE tại K (gt).

=> K là trực tâm.

=> AK là đường cao.

Xét tam giác ABC cân tại A: AK là đường cao (cmt).

=> AK là đường phân giác góc BAC (Tính chất các đường trong tam giác cân).