Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tam giác AHB và tam giác AHC có
AH _ chung
AB = AC
Vậy tam giác AHB~ tam giác AHC (ch-cgv)
Ta có tam giác ABC cân tại A, có AH là đường cao
đồng thười là đường pg
b, Xét tam giác AMH và tam giác NAH có
HA _ chung
^MAH = ^NAH
Vậy tam giác AMH = tam giác NAH (ch-gn)
=> AM = AN ( 2 cạnh tương ứng )
c, Ta có AM/AB = AN/AC => MN // BC
d, Ta có \(AH^2+BM^2=AN^2+BH^2\)
Xét tam giác BMH vuông tại M \(MB^2=BH^2-MH^2\)
Thay vào ta được \(AH^2+BH^2-MH^2=AN^2+BH^2\Leftrightarrow AH^2-MH^2=AN^2\)
Lại có AM = AN (cmt)
\(AM^2=AH^2-MH^2\)( luôn đúng trong tam giác AMH vuông tại M)
Vậy ta có đpcm
TU VE HINH NHA
CÓ TAM GIÁC ABC VUÔNG TẠI A :
=>AB=AC( DN TAM GIÁC CÂN)
a) XÉT TAM GIÁC ABH VUÔNG TẠI H VÀ TAM GIÁC ACH VUÔNG TẠI H CÓ:
AB=AC( CMT)
AH CHUNG
=> TAM GIÁC AHB = TAM GIAC AHC( CH- CGV)
b)TAM GIÁC AHB= TAM GIÁC AHC (CM Ở CÂU a)
=>GÓC BAH = GÓC CAH(2 GÓC TƯƠNG ỨNG)
XÉT TAM GIÁC AMH VUÔNG TẠI M VÀ TÂM GIC ANH VUÔNG TẠI N CÓ:
GÓC BAH= GÓC CAH(CMT)
AH CHUNG
=> TAM GIÁC AMH = TAM GIÁC ANH( CH- GN)
=>AM=AN( 2 CÁNH TUONG ỨNG)
=>TAM GIAC AMN CÂN TẠI A( DN TAM GIAC CAN )
K CHO M NHA
@trần thị giang : thì mình KHÔNG hỏi bạn, nếu ai biết thì trả lời, CÂM ĐƯỢC RỒI
tự kẻ hình nghen :33333
a) Xét tam giác AHB và tam giác AHC có
AH chung
AHC=AHB(=90 độ)
AB=AC(gt)
=> tam giác AHB= tam giac AHC(ch-cgv)
b) từ tam giác AHB= tam giác AHC=> A1=A2( hai góc tương ứng )
Xét tam giác AMH và tam giác ANH có
A1=A2(cmt)
AH chung
AMH=ANH(=90 độ)
=> tam giấcMH=tam giác ANH(ch-gnh)
=> AM=AN( hai cạnh tương ứng)
=> tam giác AMN cân A
a: Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
Do đó: ΔABH=ΔACH
b: Xét ΔAMH vuông tại M và ΔANH vuông tại N có
AH chung
\(\widehat{MAH}=\widehat{NAH}\)
Do đó: ΔAMH=ΔANH
Suy ra: AM=AN
hay ΔAMN cân tại A
c: Xét ΔABC có AM/AB=AN/AC
nên MN//BC
Xét \(\Delta AHB\) vuông tại H và \(\Delta AHC\) vuông tại H:
\(AB=AC\) (\(\Delta ABC\) cân tại A).
\(\widehat{B}=\widehat{C}\) (\(\Delta ABC\) cân tại A).
\(\Rightarrow\Delta AHB=\) \(\Delta AHC\left(ch-gn\right).\)
\(\Rightarrow\widehat{BAH}=\widehat{CAH}.\)
Xét \(\Delta AMH\) vuông tại M và \(\Delta ANH\) vuông tại N:
\(AHchung.\\ \widehat{MAH}=\widehat{NAH}\left(\widehat{BAH}=\widehat{CAH}\right).\\ \Rightarrow\Delta AMH=\Delta ANH\left(ch-gn\right).\)
Xét \(\Delta AMN:AM=AN\left(\Delta AMH=\Delta ANH\right).\)
\(\Rightarrow\Delta AMN\) cân tại A.
\(\Rightarrow\widehat{AMN}=\dfrac{180^o-\widehat{A}}{2}.\)
Mà \(\widehat{ABC}=\dfrac{180^o-\widehat{A}}{2}\) (\(\Delta ABC\) cân tại A).
\(\Rightarrow\widehat{AMN}=\widehat{ABC}.\\ \Rightarrow MN//BC.\)
a) xét tam giác ABH và tam giác AHC có
AB=AC( tam giác ABC cân tại A)
BHA=CHA=\(90^0\)( \(AH\perp BC\))
AH là cạnh chung
Do đó tam giác ABH = tam giác AHC( cạnh huyền- cạnh góc vuông)
b) có Tam giác ABH = tam giác AHC (cmt)
\(\Rightarrow\)A1=A2( 2 góc tương ứng)
xét tam giác AMH và tam giác ANH có
A!=A2( cmt)
AH là cạnh chung
AMH=ANH=\(90^0\) ( HM vuông góc với AB,HN vuông góc với AC)
Do đó tam giác AMH và tam giác ANH( cạnh huyền góc nhọn)
\(\Rightarrow\)AM=AN( 2 cạnh tương ứng)
\(\Rightarrow\)tam giác AMN cân tại A(ĐN)