K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2017

Giải sách bài tập Toán 7 | Giải sbt Toán 7

*) Ta có: ΔABC cân tại A

Giải sách bài tập Toán 7 | Giải sbt Toán 7

BD = CE (giả thiết)

Suy ra: ΔABD = ΔACE (c.g.c)

⇒ AD = AE ( hai cạnh tương ứng)

*) Tam giác ADE có AD = AE nên tam giác này cân tại A (theo định nghĩa tam giác cân)

AH
Akai Haruma
Giáo viên
2 tháng 3 2021

Lời giải:

a) Xét tam giác $AHB$ và $AHC$ có:

$AH$ chung

$AB=AC$ do $ABC$ cân tại $A$

$\widehat{AHB}=\widehat{AHC}=90^0$

$\Rightarrow \triangle AHB=\triangle AHC$ (ch-cgv)

b) 

Vì $ABC$ cân tại $A$ nên $\widehat{ABC}=\widehat{ACB}$

$\Rightarrow 180^0-\widehat{ABC}=180^0-\widehat{ACB}$ 

hay $\widehat{ABD}=\widehat{ACE}$ 

Xét tam giác $ABD$ và $ACE$ có:

$BD=CE$

$AB=AC$

$\widehat{ABD}=\widehat{ACE}$ (cmt)

$\Rightarrow \triangle ABD=\triangle ACE$ (c.g.c)

$\Rightarrow AD=AE$ nên $ADE$ là tam giác cân.

AH
Akai Haruma
Giáo viên
2 tháng 3 2021

Hình vẽ:

undefined

31 tháng 5 2017

Hình vẽ:

A B C D E

Giải:

Vì tam giác \(ABC\) cân tại \(A\):

\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)

\(\Rightarrow\widehat{ABD}=\widehat{ACE}\) ( góc bù )

Xét \(\Delta ABD\)\(\Delta ACE\) có:

\(AB=AC \) \(\left(gt\right)\)

\(\widehat{ABD}=\widehat{ACE}\) \(\left(cmt\right)\)

\(BD=CE \) \(\left(gt\right)\)

Do đó: \(\Delta ABD=\Delta ACE\) \(\left(c.g.c\right)\)

\(\Rightarrow AD=AE\) ( cặp cạnh tương ứng )

\(\Rightarrow\Delta ADE\) cân tại \(A\).

20 tháng 1 2018

Bài làm

Bạn tự vẽ hình nhé

Vì tam giác ABCABC cân tại A:

⇒ˆABC=ˆACB⇒ABC^=ACB^

⇒ˆABD=ˆACE⇒ABD^=ACE^ ( góc bù )

Xét ΔABDΔABDΔACEΔACE có:

AB=ACAB=AC (gt)

ˆABD=ˆACEABD^=ACE^ (cmt)

BD=CEBD=CE (gt)(gt)

Do đó: ΔABD=ΔACEΔABD=ΔACE (c.g.c)(c.g.c)

⇒AD=AE⇒AD=AE ( cặp cạnh tương ứng )

⇒ΔADE⇒ΔADE cân tại A

4 tháng 4 2018

theo đầu bài ta có góc abc=góc acb 

mà góc ABD+ABC =180(kề bù)

góc ACE+ACB =180 (kề bù)

suy ra góc ABD =ACE

xét tam giác ABD và tam giác ACE 

AB=AC(gt)

góc ABD=ACE

BD=CE(gt)

Do đó tam giác ABD=tam giác ACE (c.g.c)

nên AD=AE (2 cạnh tương ứng)

suy ra tam giác ADE cân

1 tháng 6 2018

Chứng minh được tam giác ABD =  tam giác ACE (c-g-c) => AD = AE

Từ đó tam giác ADE cân tại A.

Xét ΔABD và ΔACE có

AB=AC

góc ABD=góc ACE

BD=CE

Do đó: ΔABD=ΔACE

=>AD=AE

Xét ΔABD và ΔACE có

AB=AC

góc ABD=góc ACE

BD=CE

Do đó: ΔABD=ΔACE

=>AD=AE

a: Xét ΔABD và ΔACE có 

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

BD=CE

Do đó:ΔABD=ΔACE

b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

\(\widehat{HAB}=\widehat{KAC}\)

Do đó: ΔAHB=ΔAKC

Suy ra: BH=CK; AH=AK

Xét ΔADE có 

AH/AD=AK/AE

nên HK//DE
hay HK//BC

c: Ta có: \(\widehat{OBC}=\widehat{HBD}\)

\(\widehat{OCB}=\widehat{KCE}\)

mà \(\widehat{HBD}=\widehat{KCE}\)

nên \(\widehat{OBC}=\widehat{OCB}\)

hay ΔOBC cân tại O

27 tháng 1 2016

tam giác ABC cân =>góc B=góc C 

=>góc ABD=góc ACE (dựa vào 2 góc kề bù)

Xét tam giác ABD và tam giác ACE có

AB=AC(tam giác ABC cân)

góc ABD= góc ACE(cmt)

BD=CE(GT)

=>tam giác ABD = tam giác ACE (c-g-c)

=>AD=AE(2 cạnh tương ứng)

=>tam giác ADE cân tại A