Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác ABC, M là trung điểm của BC. Trên nửa mp bờ AB ko chứa C vẽ đoạn thẳng AD vuông góc AB và AD=AB. Trên nửa mp bờ AC ko chứa B, vẽ đoạn thẳng AE vuông góc AC và AE=AC. Trên tia AM ta lấy điểm F sao cho M là trung điểm của À.
a) CMR: tam giác MAC= tam giác MBF => AC = BF
b) CMR: tam giác ADE = tam giác BAF
c) CM AM vuông góc DE
d) Từ A, vẽ đường thẳng vuông góc với BC cắt BC tại H, cắt DE tại K. CMR: K là trung điểm của DE
bn hãy vận dụng hết các kiến thức đã học
Nhớ lại các bài giảng của thầy cô giáo
Tìm các mối quan hệ giữa cái này và cái kia
sau đó =>............
Giải
Bạn cân hình cho vuông góc nha! Mình không cân được.
Hai tia AE và AC cùng thuộc nửa mặt phẳng có bờ là đường thẳng AB và \(\widehat{BAC}< \widehat{BAE}=90^o\)nên tia AC nằm giữa hai tia AB và AE .
Do đó :
\(\widehat{BAC}+\widehat{CAE}=\widehat{BAE}\)hay
\(\widehat{BAC}=90^o-\widehat{CAE}\left(1\right)\)
Tương tự ta cũng có :
\(\widehat{EAD}-90^o-\widehat{CAE}\left(2\right)\)
Từ (1) và (2) suy ra :
\(\widehat{BAC}=\widehat{EAD}\left(3\right)\)
Xét 2 tam giác ABC và EAD,chúng có :
\(AB=AE\left(gt\right),\widehat{BAC}=\widehat{EAD}\left(theo\left(3\right)\right),AC=AD\left(gt\right)\)
Vậy \(\Delta ABC=\Delta AED\left(c.g.c\right)\)
b) Do 2 tam giác ABC và AED = nhau ta có :
\(BC=ED\&\widehat{C}=\widehat{D}\left(4\right)\)
Ta lại có \(CM=\frac{1}{2}BC;DN=\frac{1}{2}ED\)Vì M và N là trung điểm của BC và AD .
=> CM = AN
Hai tam giác AMC = AND có :
AC = AD (gt) \(\widehat{C}=\widehat{D}\left(theo\left(4\right)\right),CM=DN\left(theo\left(5\right)\right)\)
Vậy \(\Delta AMC=\Delta AND\left(c.g.c\right)\)