K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2020

Bài này cô mk dạy phải chứng minh thẳng hàng, không đc ra ngay nếu không sẽ mất điểm đó bạn.

21 tháng 5 2020

a)
Ta có: ΔABC cân tại A => góc ABC = góc ACB
mà ACB = ECN ( 2 góc đối đinh )
==> ABD = ECN ( vì D ∈ BC )
Xét ΔDBM và ΔECN có:
+ BDM= NEC = 90°
+ BD = EC (gt)
+ ABD = ECN (cmt)
==> ΔDBM = ΔECN ( c.g.vuông - g.n.kề )
==> MD = NE ( 2 cạnh tương ứng ) ( đpcm )

8 tháng 3 2018

a) tta có góc HBD=góc ABC ( đối đỉnh )

         góc KCE=góc ACB ( đối đỉnh )

    mà góc ABC=góc ACB ( tam giác ABC cân )

suy ra góc HBD=gócKCE

xét tam giác HBD và KCE có :

HBD=KCE

BHD=CKE (=90 độ )

BD=CE

=) tam giác HBD=KCE

=)HB=CK

b) ta có góc AHB=ACK ( = 180* - góc ABC )

xét tam giác AHB và tam giác AKC có

góc AHB=gócAKC

HB=CK

AB=AC

suy ra tam giác AHB= tam giác AKC

=) góc AHK = góc AKC

c) ta có HD//KE ( cùng vuông vs BC )

mà HD=KE ( tg HBD=tgKCE )

suy ra HKED là hình bình hành 

=) HK//DE

d) ta có góc HAD=góc KAE ( tg AHB=tgAKC )

=) góc HAD+BAC=góc KAE+BAC

=) góc HAE= góc KAD

do AB=AC ; BD=CE =) AB+BD=AC+CE

=) AD=AE

xét tg AHE và tg AKD có

góc HAE=góc KAD

AH=AK ( tg AHB=tg AKC )

AE=AD

suy ra tg AHE = tg AKD 

e) do HKED là hình bình hành ; HK vuông vs HD

=) HKED là hình chữ nhật

mà  I là gđ của 2 đường chéo HE và DK

suy ra ID=IE

xét tg AID và tg AIE có

AD=AE

ID=IE

chung AI

suy ra tg AID=tg AIE

=) góc DAI = góc EAI

=) AI là phân giác goc DAE

mà tg DAE cân tại A

suy ra AI là đường cao tg DAE

=) AI vuông vs DE

a) Có \(\Delta ABC\)cân \(\Rightarrow AB=AC\)

Xét \(\Delta ABD\)và \(\Delta ACE\)có :

\(\widehat{EAD:}chung\)

\(AB=AC\)

\(\widehat{ABD}=\widehat{AEC}\left(gt\right)\)

\(\Rightarrow\Delta ABD=\Delta AEC\left(ch-gn\right)\)

\(\Rightarrow BD=CE\left(dpcm\right)\)

b)Xét \(\Delta BEC\)và \(\Delta CDB\)có :

\(CE=BD\left(cmt\right)\)

\(\widehat{BEC}=\widehat{CDB}=90^o\)

\(BC:chung\)

\(\Rightarrow\Delta BEC=\Delta CDB\left(ch-cgv\right)\)

\(\Rightarrow\widehat{BCE}=\widehat{CBD}\)

  • \(\Delta BHC\)có \(\widehat{BEC}=\widehat{CBD}\Rightarrow\Delta BHC\)cân tại \(H\)