Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Xét tam giác ABD và tam giác ACE có:
AB=AC( tam giác ABC cân tại A)
Góc B=góc C(tam giác ABC cân tại A)
BD=CE(gt)
=> Tam giác ABD= tam giác ACE
b/ Xét tam giác HDB và tam giác KEC có:
BD=EC(gt)
Góc B=góc C(tam giác ABC cân tại A)
Góc DHB=góc EKC=90o
=> tam giác HDB=tam giác KEC(ch-gn)
=> HD=KE(cạnh tương ứng)
c/ Ta có: tam giác HDB=tam giác KEC(chứng minh trên)
=> Góc KEC=góc HDB(góc tương ứng)
=> Góc HDB= góc EDO(đối đỉnh)
Góc KEC=góc DEO(đối đỉnh)
Suy ra góc DEO=góc EDO
Vậy tam giác OED là tam giác cân và cân tại O
Phú mệt quá ai tik dùm với!!!!!!!!!!!!!!!!!!!!!
c/ Do tam giác HDB=tam giác KEC nên BH=CK(cạnh tương ứng)
Mà AH=AB-BH
AK=AC-CK
Vì AB=AC nên AH=AK
Xét tam giác AHO và tam giác AKO có:
AO chung
Góc AHO=góc AKO=90o
AH=AK(chứng minh trên)
=> tam giác AHO=tam giác AKO(ch-cgv)
=> Góc HAO=góc KAO(góc tương ứng)
Vậy AO là tia phân giác góc HAK
Câu a (1,0đ) Chứng minh :ABD = ACE
Xét ABD và ACE :có AB=AC (cạnh bên cân); =(góc đáycân);BD=CE (gt) (0,25đ) x3=(0,75đ)
Vậy ABD = ACE(cgc) (0,25đ)
Câu b (0,75đ) Chứng minh đúng vuông AMD = vuông ANE vì có AD = AE;
(do ABD =ACE) (0,5đ)
Kết luận AMD = ANE và suy ra AM =AN) (0,25đ)
Câu c (0,75đ): Chứng minh đúng vuông BMD = vuông CNE (cạnh huyền - góc nhọn )(0,25đ)
Lập luận chứng minh được rồi suy ra KDE cân tại K (1)(0,25đ)
Từ lập luận để (2)
Kết hợp (1)và (2) KDE đều )(0,25đ)
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó:ΔABD=ΔACE
b: Xét ΔADI vuông tại D và ΔAEI vuông tại E có
AI chung
AD=AE
Do đó: ΔADI=ΔAEI
Suy ra: \(\widehat{DAI}=\widehat{EAI}\)
hay AI là tia phân giác của góc BAC
c: Xét ΔADE có AD=AE
nên ΔADE cân tại A
Bạn tự vẽ hình nha!
a.
Ta có:
- B1 + B2 = 180
- C1 + C2 = 180
mà B1 = C1 (tam giác ABC cân tại A)
=> B2 = C2 (1)
Xét tam giác ADB và tam giác AEC:
AB = AC (tam giác ABC cân tại A)
B2 = C2 (theo 1)
BD = CE (gt)
=> Tam giác ADB = ACE (c.g.c)
=> AD = AE (2 cạnh tương ứng)
=> Tam giác ADE
b.
Xét tam giác AHB vuông tại A và tam giác AKC vuông tại K:
AB = AC (tam giác ABC cân tại A)
A1 = A2 (tam giác ADB = tam giác AEC)
=> Tam giác AHB = Tam giác AKC (cạnh huyền - góc nhọn)
=> BH = CK (2 cạnh tương ứng)
AH = AK (2 cạnh tương ứng)
c.
Xét tam giác HDB vuông tại H và tam giác KEC vuông tại K:
BH = CK (theo câu b)
BD = CE (gt)
=> Tam giác HDB = Tam giác KEC (cạnh huyền - cạnh góc vuông)
Ta có:
DBH = IBC (2 góc đối đỉnh)
KCE = ICB (2 góc đối đỉnh)
mà DBH = KCE (tam giác HDB = tam giác KEC)
=> IBC = ICB
=> Tam giác IBC cân tại I
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó:ΔABD=ΔACE
b: Xét ΔADI vuông tại D và ΔAEI vuông tại E có
AI chung
AD=AE
Do đó: ΔADI=ΔAEI
Suy ra: \(\widehat{DAI}=\widehat{EAI}\)
hay AI là tia phân giác của góc BAC
c: Xét ΔADE có AD=AE
nên ΔADE cân tại A