K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Xét ΔABH vuông tại H và ΔACK vuông tại K có 

AB=AC

\(\widehat{BAH}\) chung

Do đó: ΔABH=ΔACK

Suy ra: BH=CK

2: Xét ΔKBC vuông tại K và ΔHCB vuông tại H có

BC chung

KC=HB

Do đó: ΔKBC=ΔHCB

Suy ra:KB=HC

=>KB=CE

Xét ΔKBM vuông tại M và ΔECN vuông tại N có

KB=EC

\(\widehat{KBM}=\widehat{ECN}\left(=\widehat{ACB}\right)\)

Do đó: ΔKBM=ΔECN

Suy ra: KM=EN

Xét tứ giác KMEN có 

KM//EN

KM=EN

Do đó: KMEN là hình bình hành

Suy ra: Hai đường chéo KE và MN cắt nhau tại trung điểm của mỗi đường

hay I là trung điểm của KE

2 tháng 5 2021

Hình tự vẽ nha bạn

a) Xét \(\Delta AHB\)và \(\Delta AKC\)có:

     \(\hept{\begin{cases}\widehat{A}:chung\\AB=AC\left(gt\right)\\\widehat{AHB}=\widehat{AKC}\left(gt\right)\end{cases}}\)

\(\Rightarrow\Delta AHB=\Delta AKC\left(ch-gn\right)\)

=>AH=AK ( 2 cạnh tương ứng) -đpcm

b) Xét \(\Delta AKI\)và \(\Delta AHI\)có:

 \(\hept{\begin{cases}AK=AH\\\widehat{AKI}=\widehat{AHI}\\AI:chung\end{cases}}\)

\(\Rightarrow\Delta AKI=\Delta AHI\left(ch-cgv\right)\)

\(\Rightarrow\widehat{IAK}=\widehat{IAH}\)( 2 góc tương ứng)

=> AI là ti phân giác góc KAH

Xét \(\Delta KAH\)cân tại A ( do AH=AK ) có AI là tia phân giác ứng cạnh KH

=> AI đồng thời là đường trung trực của cạnh KH (t/c) -đpcm

c) Kẻ CM \(\perp\)BE

Xét tứ giác BKCM có:

   \(\hept{\begin{cases}\widehat{CKB}=90^0\\\widehat{KBM}=90^0\\\widehat{BMC}=90^0\end{cases}}\)

=> tứ giác BKCM là hình chữ nhật (dấu hiệu nhận biết)

=> BK=CM (t/c) (1)

Dễ dàng chứng minh đc: BK=CH (2)

Từ (1) và (2) có : CM=CH

Xét \(\Delta BHC\)và \(\Delta BMC\)có:

\(\hept{\begin{cases}CH=CM\\\widehat{BHC}=\widehat{BMC}\\CB:chung\end{cases}}\)

=> \(\Delta BHC=BMC\left(ch-cgv\right)\)

=> \(\widehat{CBH}=\widehat{CBM}\)(2 góc tương ứng)

=> BC là tia phân giác góc HBM

hay BC là tia phân giác HBE -đpcm

Chúc bạn học tốt!

2 tháng 5 2021

d) Xét tam giác CME vuông tại M có CE là cạnh huyền

=>CE>CM (trong tam giác vuông cạnh huyền là cạnh lớn nhất)

mà CH=CM do \(\Delta CBH=\Delta CBM\)

=>CE>CH

1) Xét ΔABH vuông tại H và ΔACK vuông tại K có

AB=AC(ΔABC cân tại A)

\(\widehat{BAH}\) chung

Do đó: ΔABH=ΔACK(Cạnh huyền-góc nhọn)

2) Xét ΔBCK vuông tại K và ΔCBH vuông tại H có

BC chung

CK=BH(ΔABH=ΔACK)

Do đó: ΔBCK=ΔCBH(Cạnh huyền-cạnh góc vuông)

Suy ra: \(\widehat{KCB}=\widehat{HBC}\)(hai góc tương ứng)

hay \(\widehat{OBC}=\widehat{OCB}\)

Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)(cmt)

nên ΔOBC cân tại O(Định lí đảo của tam giác cân)

Suy ra: OB=OC

26 tháng 7 2017

Toán lp 7 hả mk ko quen

Năm nay mk mới chỉ lên lớp 7 thôi

Năm nay mk mới được học kiến thức của lp 7 lên mk ko thể giải được bài toán này

Những xin bn Nguyễn Thị Thanh Hải hãy cho mk 1 L-I-K-E

~Chúc bn Nguyễn Thị Thanh Hải học giỏi~ 

     Gặp nhiều may mắn trong cuộc sống

Câu 4. Cho tam giác ABC, đường phân giác AD (D thuộc BC), kẻ tia Dx song song với AB, tia Dx cắt AC tại E. Chứng minh tam giác ADE là tam giác cân.Câu 5. Cho tam giác ABC có AB = 6cm, AC = 8cm và BC = 10cm.a) Chứng tỏ tam giác ABC vuông.b) Kẻ phân giác BD và CE (D thuộc AC, E thuộc AB), BD và CE cắt nhau tại I. Tính góc BICCâu 6. Cho tam giác ABC vuông tại A, kẻ AH vuông góc với BC (H thuộc vẽ tia Bx song song với AH). Trên Bx...
Đọc tiếp

Câu 4. Cho tam giác ABC, đường phân giác AD (D thuộc BC), kẻ tia Dx song song với AB, tia Dx cắt AC tại E. Chứng minh tam giác ADE là tam giác cân.

Câu 5. Cho tam giác ABC có AB = 6cm, AC = 8cm và BC = 10cm.

a) Chứng tỏ tam giác ABC vuông.

b) Kẻ phân giác BD và CE (D thuộc AC, E thuộc AB), BD và CE cắt nhau tại I. Tính góc BIC

Câu 6. Cho tam giác ABC vuông tại A, kẻ AH vuông góc với BC (H thuộc vẽ tia Bx song song với AH). Trên Bx lấy D sao cho BD = AH.

a) Chứng minh ΔAHB và ΔDHB bằng nhau.

b) Nếu AC = 12cm; BC =15cm. Tính độ dài DH.

Câu 7.  Cho tam giác ABC vuông tại B có góc B1=B; Â=60o, kẻ BH vuông góc với AC (H thuộc AC). Qua B kẻ đường thẳng d song song với AC.

a) Tính góc ABH.

b) Chứng minh đường thẳng d vuông góc với BH.

Câu 8.  Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M. Trên tia đối của tia CB lấy điểm N sao cho BM = CN.

a) Chứng minh ΔAMN là tam giác cân.

b) Kẻ BH vuông góc với AM (H thuộc AM), CK vuông góc với AN (K thuộc AN). Chứng minh rằng BH = CK.

c) Gọi O là giao điểm của BH và CK. Chứng minh  ΔOBC cân.

d) Gọi D là trung điểm của BC. Chứng minh rằng A, D, O thẳng hàng.

Câu 9. Cho tam giác ABC, điểm D thuộc cạnh BC. Gọi M là trung điểm của AD. Trên tia đối của tia MB lấy điểm E sao cho ME = MB. Trên tia đối của tia MC lấy F sao cho MF = MC. Chứng minh:

a) AE = BD;

b) AF // BC.

c) Ba điểm A, E, F thẳng hàng.

Câu 10. Cho tam giác ABC cân tại A, M là trung điểm của BC.

a) Chứng minh góc AFE = gócABC⇒EF//BC và  ΔABM=ΔACM.

b) Chứng minh AM⊥BC.

c) Trên cạnh BA lấy  điểm E. Trên cạnh CA lấy điểm F sao cho BE = CF. Chứng minh ΔEBC và ΔFCB bằng nhau.

d) Chứng minh EF // BC.

 

0

a: Xét ΔABD và ΔACE có 

\(\widehat{BAD}=\widehat{CAE}\)

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

Do đó: ΔABD=ΔACE

Suy ra: BD=CE

b: Xét ΔHDB vuông tại H và ΔKEC vuông tại K có

BD=CE

\(\widehat{D}=\widehat{E}\)

Do đó: ΔHDB=ΔKEC

Suy ra: BH=CK

c: Ta có: ΔHDB=ΔKEC
nên \(\widehat{HBD}=\widehat{KCE}\)

mà \(\widehat{IBC}=\widehat{HBD}\)

và \(\widehat{ICB}=\widehat{KCE}\)

nên \(\widehat{IBC}=\widehat{ICB}\)

=>ΔIBC cân tại I

=>IB=IC

Xét ΔABI và ΔACI có

AB=AC
BI=CI

AI chung

DO đó: ΔABI=ΔACI

Suy ra: \(\widehat{BAI}=\widehat{CAI}\)

hay AI là tia phân giác của góc BAC

19 tháng 7 2020

A B C D E 2 2 1 1 M H K O

A) 

TA CÓ 

\(\widehat{B_1}+\widehat{B_2}=180^o\left(kb\right)\)

\(\widehat{C_1}+\widehat{C_2}=180^o\left(kb\right)\)

mà \(\widehat{B_2}=\widehat{C_2}\)

\(\Rightarrow\widehat{B_1}=\widehat{C_1}\)

XÉT \(\Delta\)DAB VÀ \(\Delta EAC\)

\(AB=AC\left(GT\right)\)

\(\widehat{B_1}=\widehat{C_1}\left(CMT\right)\)

\(DB=EC\left(GT\right)\)

=>\(\Delta DAB=\Delta EAC\left(C-G-C\right)\)

\(\Rightarrow DA=EA\)

=>\(\Delta ADE\)CÂN TẠI A

B) VÌ \(\Delta ADE\)CÂn TẠI A

\(\Rightarrow\widehat{D}=\widehat{E}\)

XÉT \(\Delta DHB\)\(\Delta EKC\)CÓ 

\(\widehat{DHB}=\widehat{EKC}=90^o\)

\(DB=EC\left(GT\right)\)

\(\widehat{D}=\widehat{E}\left(CMT\right)\)

=>\(\Delta DHB=\Delta EKC\left(CH-GN\right)\)

\(\Rightarrow\widehat{HBD}=\widehat{KCE}\)

GIẢ SỬ GỌI O LÀ GIAO ĐIỂM CỦA AM,BH,CK

TA CÓ

 ​\(\widehat{HBD}=\widehat{CBO}\left(Đ^2\right)\)

\(\widehat{ECK}=\widehat{BCO}\left(Đ^2\right)\)

MÀ \(\widehat{HBD}=\widehat{ECK}\)

=>\(\widehat{CBO}=\widehat{BCO}\)

=> \(\Delta COB\)CÂN TẠI O

MÀ BO LÀ TIA ĐỐI CỦA BH 

      OC LÀ TIA ĐỐI CỦA CK

      OM LÀ TIA ĐỐI CỦA MA

=> \(AM,BH,CK\)ĐỒNG QUY TẠI MỘT ĐIỂM

19 tháng 7 2020

đố các bn mình có mấy giấy khen thi cấp tĩnh ?

mình đoán là 1 giấy khen thi cấp tĩnh