Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xét ΔABM và ΔACM có
góc B = góc C
AB = AC ( ΔABC cân tại A )
BM=CM ( tính chất các đường của Δ cân từ đỉnh )
=> ΔABM = ΔACM
b) xét ΔBME và ΔCMF có
góc B bằng góc C
BM=CM
=> ΔBME=ΔCMF ( cạnh huyền góc nhọn )
=> FM = EM
=> ΔEMF cân tại M
c) gọi giao của EF và AM là O
ta có BE = CF => AE=AF
=> ΔAEF cân tại A
ta có AM là tia phân giác của góc A
mà O nằm trên AM suy ra AO cũng là tia phân giác của góc A
ta lại có ΔAEF cân tại A
suy ra AO vuông góc với EF
suy ra AM vuông góc với EF
xét ΔAEF và ΔABC có
EF và BC đều cùng vuông góc với AM => EF // BC
a) Xét ΔABM và ΔACM có
AB=AC(ΔABC cân tại A)
AM chung
BM=CM(M là trung điểm của BC)
Do đó: ΔABM=ΔACM(c-c-c)
b) Xét ΔEMB vuông tại E và ΔFMC vuông tại F có
BM=CM(M là trung điểm của BC)
\(\widehat{EBM}=\widehat{FCM}\)(hai góc ở đáy của ΔABC cân tại A)
Do đó: ΔEMB=ΔFMC(Cạnh huyền-góc nhọn)
Suy ra: ME=MF(hai cạnh tương ứng)
Xét ΔEMF có ME=MF(cmt)
nên ΔEMF cân tại M(Định nghĩa tam giác cân)
a) Xét ΔABM và ΔACM có
AB=AC(ΔABC cân tại A)
AM chung
BM=CM(M là trung điểm của BC)
Do đó: ΔABM=ΔACM(c-c-c)
a)Xét tgiac ABM và tgiac ACM,ta cí:
AB=AC(vì tgiac ABC cân tại A)
MC=MB(giả thiết)
AM là cạnh chung
=>tgiac ABM = tgiac ACM(c.c.c)
a) Xét tam giác ABM va tam giác ACM
Ta có: AB=AC(gt)
Góc B= góc C(gt)
MB=MC(Vì M là trung điểm của BC)
Vậy tam giác ABM=tam giác ACM(c.g.c)
b) Xét tam giác EBM và tam giác ECM
Ta có: góc BEM = góc CFM=90 độ
góc B =góc C(gt)
BM=CM(gt)
Vậy tam giác EBM= tam giác ECM(ch-gn )
=>BE=CE (2 cạnh tương ứng)
Ta có AE=AB-EB
AF=AC-FC
Mà AB=AC
EB=FC(cmt)
=>AE=AF
Xét tam giác AEM và tam giác AFM
AE=AF(cmt)
góc AEM= góc AFM=900
AM:Cạnh chung
Vây tam giác AEM= tam giác AFM(ch-cgv)
c) Gọi {T}=AM giao nhau với EF
Xét tam giác AET và tam giác AFT
AE=AF(cmt)
góc EAT= góc AFT( vì tam giác AEM=tam giác AFM)
AT: cạnh chung
Vậy tam giác AET =tam giác AFT (c.g.c)
=>góc ATE = góc AFT(2 góc tương ứng)
mà góc ATE + góc AFT= 1800
=> GÓC ATE =GÓC AFT= 900
Vậy AM vuông góc với EF
NẾU ĐÚG THÌ CHO MÌNH NHA
a: Xét ΔABM vuông tại M và ΔACM vuông tại M có
AB=AC
AM chung
Do đó: ΔABM=ΔACM
b: Xét ΔABC có
M là trung điểm của BC
MK//AB
Do đó: K là trung điểm của AC
Ta có: ΔAMC vuông tại M
mà MK là đường trung tuyến
nên KA=KM
a) Xét AMB và AMC
ta có: AB=AC ( vì ABC cân tại A )
BM=MC ( vì AM là đường trung tuyến )
AM: cạnh chung
Suy ra: AMB = AMC ( c.c.c )
a: Xét ΔABM vuông tại M và ΔACM vuông tại M có
AB=AC
AM chung
=>ΔABM=ΔACM
b: Xét ΔAIM vuông tạiI và ΔAKM vuông tại K có
AM chung
góc IAM=góc KAM
=>ΔAIM=ΔAKM
=>AI=AI và MI=MK
c:AI=AK
MI=MK
=>AM là trung trực của IK=>AM vuông góc IK
Bạn tự vẽ hình nhé
CM :
a, Xét tam giác ABM và tam giác ACM , ta có :
góc AMB = góc AMC ( =90 o )
AB = AC (Vì tam giác ABC cân tại A)
AM : Cạnh chung
=> Tam giac ABM = tam giác ACM ( cạnh huyền - cạnh góc vuông )
còn cách thứ 2 nữa ( theo trường hợp cạnh huyền góc nhọn ) nhưng mình chỉ làm 1 cách thôi
b, Vì tam giác ABM = tam giác ACM ( chứng minh câu a )
=> góc EAM = góc FAM ( 2 góc tương ứng )
=> góc EAM = góc FAM ( 2 gó tương ứng )
Xét tam giác EAM và tam giác FAM , ta có :
gÓC EAM = góc FAM ( 90 o )
AM : cạnh chung
góc EAM = góc FAM ( cmt )
AM : cạnh chung
=> tam giác AEM = tam giác AFM ( cạnh huyền - góc nhọn )
=> ME = MF ( 2 cạnh tương ứng )
c, Vì tam giác AEM = tam giác AFM ( chứng minh câu b)
=> AE = AF ( 2 cạnh tương ứng )
Vậy tam giác AEF cân tại A
Bạn tự vẽ hình nhé
CM :
a, Xét tam giác ABM và tam giác ACM , ta có :
góc AMB = góc AMC ( =90 o )
AB = AC (Vì tam giác ABC cân tại A)
AM : Cạnh chung
=> Tam giac ABM = tam giác ACM ( cạnh huyền - cạnh góc vuông )
còn cách thứ 2 nữa ( theo trường hợp cạnh huyền góc nhọn ) nhưng mình chỉ làm 1 cách thôi
b, Vì tam giác ABM = tam giác ACM ( chứng minh câu a )
=> góc BAM = góc CAM ( 2 góc tương ứng )
=> góc EAM = góc FAM ( 2 gó tương ứng )
Xét tam giác EAM và tam giác FAM , ta có :
gÓC EAM = góc FAM ( 90 o )
AM : cạnh chung
góc EAM = góc FAM ( cmt )
AM : cạnh chung
=> tam giác AEM = tam giác AFM ( cạnh huyền - góc nhọn )
=> ME = MF ( 2 cạnh tương ứng )
c, Vì tam giác AEM = tam giác AFM ( chứng minh câu b)
=> AE = AF ( 2 cạnh tương ứng )
Vậy tam giác AEF cân tại A