K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó: ΔAHB=ΔAHC

b: Xét ΔAHM vuông tại M và ΔAHN vuông tại N có

AH chung

\(\widehat{MAH}=\widehat{NAH}\)

Do đó: ΔAMH=ΔANH

Suy ra: AM=AN

hay ΔAMN cân tại A

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó: ΔAHB=ΔAHC

b: Xét ΔAHM vuông tại M và ΔAHN vuông tại N có

AH chung

\(\widehat{MAH}=\widehat{NAH}\)

Do đó: ΔAMH=ΔANH

Suy ra: AM=AN

hay ΔAMN cân tại A

30 tháng 12 2022

a: Ta có; ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC

b: Xét ΔHDB vuông tại D và ΔHEC vuông tại E có

HB=HC

góc B=góc C

Do đó: ΔHBD=ΔHCE

=>HD=HE

30 tháng 12 2022

a: Ta có; ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC

b: Xét ΔHDB vuông tại D và ΔHEC vuông tại E có

HB=HC

góc B=góc C

Do đó: ΔHBD=ΔHCE

=>HD=HE

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

AB=AC

\(\widehat{BAD}\) chung

Do đó: ΔADB=ΔAEC

b: Ta có: ΔADB=ΔAEC

nên BD=CE

Xét ΔEBC vuông tạiE và ΔDCB vuông tại D có

BC chung

CE=BD

Do đó:ΔEBC=ΔDCB

Suy ra: \(\widehat{OCB}=\widehat{OBC}\)

hay ΔOBC cân tại O

c: Xét ΔABC có AE/AB=AD/AC

nên ED//BC

d: Ta có: ΔEBC vuông tại E

mà EM là đường trung tuyến

nên BC=2EM

1 tháng 3 2022

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

AB=AC

ˆBADBAD^ chung

Do đó: ΔADB=ΔAEC

b: Ta có: ΔADB=ΔAEC

nên BD=CE

Xét ΔEBC vuông tạiE và ΔDCB vuông tại D có

BC chung

CE=BD

Do đó:ΔEBC=ΔDCB

Suy ra: ˆOCB=ˆOBCOCB^=OBC^

hay ΔOBC cân tại O

c: Xét ΔABC có AE/AB=AD/AC

nên ED//BC

d: Ta có: ΔEBC vuông tại E

mà EM là đường trung tuyến

nên BC=2EM

17 tháng 12 2022

a: ΔABC cân tại A

mà AH là phân giác

nên H là trung điểm của BC

=>HB=HC

b: Xét ΔHDB vuông tại D và ΔHEC vuông tại E có

HB=HC

góc B=góc C

Do đó: ΔHDB=ΔHEC

a: Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC

AH chung

Do đó: ΔABH=ΔACH

b: Xét ΔAMH vuông tại M và ΔANH vuông tại N có

AH chung

\(\widehat{MAH}=\widehat{NAH}\)

Do đó: ΔAMH=ΔANH

Suy ra: AM=AN

hay ΔAMN cân tại A

c: Xét ΔABC có AM/AB=AN/AC

nên MN//BC

a: Xet ΔABM và ΔACM có

AB=AC

AM chung

BM=CM

=>ΔABM=ΔACM

b: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

=>ΔAEM=ΔAFM

=>AE=AF
=>ΔAEF cân tại A