Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
b: ΔABC cân tại A
mà AH là trung tuyến
nên AH là phân giác
c: Xet ΔAEH vuôngtại E và ΔAFH vuông tại F có
AH chung
góc EAH=góc FAH
=>ΔAEH=ΔAFH
=>AE=AF
=>ΔAEF cân tại A
mà AI là phân giác
nên AI là trung tuyến
a: Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
DO đó: ΔABH=ΔACH
b: BH=CH=BC/2=3cm
=>AH=4(cm)
c: Xét ΔABC có
H là trung điểm của BC
HM//AC
Do đó: M là trung điểm của AB
Để câu trả lời của bạn nhanh chóng được duyệt và hiển thị, hãy gửi câu trả lời đầy đủ và không nên:
- Yêu cầu, gợi ý các bạn khác chọn (k) đúng cho mình
- Chỉ ghi đáp số mà không có lời giải, hoặc nội dung không liên quan đến câu hỏi.
Lại 1 câu hỏi tào lao, cân tại A sao lại cs AB> AC chứ!
a. Vì \(\Delta ABC\)cân tại A \(\Rightarrow\)AB = AC, góc B = góc C.
Xét \(\Delta ABH\)và \(\Delta ACH\)có :
AB = AC
AH là cạnh chung
\(\Rightarrow\Delta ABH=\Delta ACH\)(cạnh huyền - cạnh góc vuông).
b.Vì \(\Delta ABH=\Delta ACH\)\(\Rightarrow\)góc AHB = góc AHC ( góc tương ứng )
Mà góc AHB +AHC = 180 độ ( kề bù ) => góc AHB = AHC = 90 độ => AH\(\perp\)BC.
c.Xét tam giac HDB và HEC có :
HB = HC ( vì tg ABH = ACH )
góc B = góc C
=> tam giác HDB = HDC ( cạnh huyền - góc nhọn )
=>BD = CE ( cạnh tương ứng )
Vì AB = AC => AD = AE.
Vì tg AHB = AHC => góc A1 = A2 ( góc tương ứng )
Xét tg AFD và AFE có :
AD = AE
Góc A1 = A2
AF là canh chung
=> Tg AFD = AFE ( c-g-c)
=> góc ADF = AEF ( góc tương ứng )
Ta có : góc A + ADF + AEF = góc A + ABC + ACB = 180 độ
=> 2.ADF = 2.ABC => Góc ADF = ABC mà 2 góc này nằm ở vị trí đồng vị => DE \(//\)BC.
a) Xét \(\Delta BAH\)và \(\Delta CAH\)có:
AH chung
\(\widehat{BAH}=\widehat{CAH}\)(AH là phân giác \(\widehat{BAC}\))
AB=AC (\(\Delta\)ABC cân tại A)
=> \(\Delta BAH=\Delta CAH\left(cgc\right)\)
b) Có AH là phân giác \(\widehat{BAC}\left(gt\right)\), \(\Delta\)ABC cân tại A (gt)
=> AM là đường phân giác trong của tam giác ABC cân tại A
=> AM trung với đường cao và đường trung tuyến
=> AM _|_ BC(đpcm)
d)
a, xét tam giác ABH và tam giác ACH có AH chung
góc AHC = góc AHB = 90
AB = AC do tam giác ABC cân tại A (gt)
=> tam giác ABH = tam giác ACH (ch-cgv)
b, ta giác ABH = tam giác ACH (câu a)
=> HB = HC (đn)
xét tam giác BHF và tam giác CHE có : góc BFH = góc CEH = 90
góc ABC = góc ACB do tam giác ABC cân tại A (gt)
=> tam giác BHF = tam giác CHE (ch-gn)
=> BF = CE (đn)
AB = AC (câu a)
BF + FA = AB
CE + AE = AC
=> FA = AE
=> tam giác AFE cân tại A (đn)
c, tam giác AFE cân tại A (Câu b)
=> góc AFE = (180 - góc BAC) : 2 (tc)
tam giác ABC cân tại A (gt) => góc ABC = (180 - góc BAC) : 2 (tc)
=> góc AFE = góc ABC mà 2 góc này đồng vị
=> FE // BC (định lí)