K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2017

A B C 6 10 D H K

a, Xét \(\Delta ABC\)VUÔNG tại A

Áp dụng định lý pitago ta có:

\(BC^2=AB^2+AC^2\)

\(\Rightarrow AB^2=BC^2-AC^2\)

\(\Rightarrow AB^2=10^2-6^2\)

\(\Rightarrow AB^2=100-36\)

\(\Rightarrow AB^2=64\)

\(\Rightarrow AB=\sqrt{64}=8\)

VẬY AB=8 cm

b, Xét \(\Delta ABD\)và \(\Delta HBD\)CÓ:

\(\widehat{BAD}=\widehat{BHD}=90độ\)

\(\widehat{ABD}=\widehat{HBD}\)(do BD là tia phân giác của \(\widehat{B}\))

BD là cạnh chung

\(\Rightarrow\Delta ABD=\Delta HBD\)(ch-gn)

\(\Rightarrow AD=HD\)(2 CẠNH TƯƠNG ỨNG)

c,Do \(\Delta ABD=\Delta HBD\left(câub\right)\)

\(\Rightarrow\widehat{BDA}=\widehat{BDH}\)(2 góc tương ứng)

lại có \(\widehat{ADK}=\widehat{HDC}\)(đối đỉnh)

\(\Rightarrow\widehat{BDA}+\widehat{ADK}=\widehat{BDH}+\widehat{HDC}\)

\(\Rightarrow\widehat{BDK}=\widehat{BDC}\)

Xét \(\Delta KBD\) VÀ \(\Delta CBD\)CÓ:

\(\widehat{ABD}=\widehat{CBD}\)(Do BD là tia phân giác của \(\widehat{B}\))

BD là cạnh chung

\(\widehat{BDK}=\widehat{BDC}\left(cmt\right)\)

Do đó \(\Delta KBD=\Delta CBD\left(g-c-g\right)\)

\(\Rightarrow BK=BC\)(2 CẠNH TƯƠNG ỨNG)

\(\Rightarrow\Delta KBC\) cân tại B

8 tháng 4 2017

uhuhuhu sợ bài này lắm rồi !

13 tháng 10 2019

KINH THÌ KỆ MẸ T

7 tháng 1 2020

A B C D H A' x x/2

Kẻ đường cao AH ; Vì \(\Delta\)ABC cân 

=> H là trung điểm BC  

Xét \(\Delta\)ABC cân tại A có ^A = 120\(^o\)

=> ^ABH = ^ACH = 30\(^o\)

=> ^BAH = 60 \(^o\)

Lấy A' đối xứng với A qua H; BH vuông góc AA'; H là trung điểm AA'

=> \(\Delta\)ABA' cân tại B mà  ^BAA' = ^BAH = 60\(^o\)

=> \(\Delta\)ABA'  đều .

Đặt: AB = x => AA' = x => AH = x/2

+) \(\Delta\)ABH vuông tại H => BH\(^2\)= AB\(^2\)- AH\(^2\)\(x^2-\frac{x^2}{4}=\frac{3x^2}{4}\)

=> \(BH=\frac{\sqrt{3}x}{2}\)

=> \(BC=2BH=\sqrt{3}x=\sqrt{3}AB\)

( Như vậy chúng ta có nhận xét: Cho \(\Delta\)ABC cân tại A; ^A = 120\(^o\)=> \(BC=\sqrt{3}AB\))

=> \(AC=AB=\frac{BC}{\sqrt{3}}=\frac{6}{\sqrt{3}}\)

+) Xét \(\Delta\)ABD vuông tại A có: ^ABD = ^ABH  = 30 \(^o\)=> ^ADB = 60\(^o\)

=> ^ADC = 180\(^o\)- ^ADB = 180\(^o\)- 60 \(^o\)= 120\(^o\) 

Mà ^BAC = 120\(^o\); ^BAD = 90\(^o\)

=> ^DAC = 120\(^o\)- 90 \(^o\)= 30\(^o\)

+) Xét \(\Delta\)DAC có: ^DAC = 30\(^o\); ^ADC = 120\(^o\) => ^DCA = 30\(^o\)

=> \(\Delta\)DAC cân tại D và có: ^ADC = 120\(^o\). Theo nhận xét in đậm ở trên: \(AC=\sqrt{3}.DC\)

=> \(DC=\frac{AC}{\sqrt{3}}=\frac{\frac{6}{\sqrt{3}}}{\sqrt{3}}=\frac{6}{3}=2\)

=> \(BD=BC-DC=6-2=4cm\)