K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2019

a, xét tam giác ABD và tam giác ACE có:

                 AB=AD(gt)

                 \(\widehat{A}\)chung

\(\Rightarrow\)tam giác ABD= tam giác ACE( CH-GN)

b,vì tam giác ABC cân tại A nên \(\widehat{B}\)=\(\widehat{C}\)mà \(\widehat{ABD}\)=\(\widehat{ACE}\)( theo câu a)

\(\Rightarrow\)\(\widehat{HBC}\)=\(\widehat{HCB}\)

\(\Rightarrow\)tam giác BHC cân tại H

c,vì tam giác BHC cân tại H nên HB=HC mà HC>HD 

\(\Rightarrow\)HB>HD

câu d hình như sai đề rồi bn ơi

21 tháng 5 2020

a)
Ta có: ΔABC cân tại A => góc ABC = góc ACB
mà ACB = ECN ( 2 góc đối đinh )
==> ABD = ECN ( vì D ∈ BC )
Xét ΔDBM và ΔECN có:
+ BDM= NEC = 90°
+ BD = EC (gt)
+ ABD = ECN (cmt)
==> ΔDBM = ΔECN ( c.g.vuông - g.n.kề )
==> MD = NE ( 2 cạnh tương ứng ) ( đpcm )

1.a) \(\Delta ABC\)cân tại A\(\Rightarrow AB=AC\).Mà \(AD=AC\Rightarrow AB=AD\)

Xét \(\Delta ABD\)có \(AB=AD\Rightarrow\Delta ABD\)cân tại A

b)Có \(\widehat{ABC}=\widehat{ACB}\left(1\right)\)( do \(\Delta ABC\)cân)

\(\widehat{ABD}=\widehat{ADB}\left(2\right)\)( do \(\Delta ABD\)cân )

Từ \(\left(1\right);\left(2\right)\Rightarrow\widehat{ABC}+\widehat{ABD}=\widehat{ACB}+\widehat{ADB}\)

\(\Rightarrow\widehat{DBC}=\widehat{ACB}+\widehat{ADB}\)hay \(\widehat{DBC}=\widehat{DCB}+\widehat{BDC}\left(dpcm\right)\)

2.

a)Nối A vs C

\(OA=0C;AB=CD\Rightarrow OA+AB=OC+CD\)

hay \(OB=OD\).Xét \(\Delta OBD\)có \(OB=OD\Rightarrow\Delta OBD\)cân tại O

b) Xét \(\Delta OAD\)và \(\Delta OCB\)có:

\(OA=OB\left(gt\right)\)

\(\widehat{AOB}:chung\)

\(OB=OD\left(cmt\right)\)

\(\Rightarrow\Delta OAD=\Delta OCB\left(c.g.c\right)\Rightarrow AD=CB\left(dpcm\right)\)

c)Có \(\Delta OAD=\Delta OCB\Rightarrow\widehat{ADO}=\widehat{CBO}\) 

Xét \(\Delta ACD\)và \(\Delta CBA\)có: \(AD=CD\)

                                                    \(\widehat{ADO}=\widehat{CBO}\)

                                                  \(CD=BA\)

\(\Rightarrow\Delta ACD=\Delta CBA\left(c.g.c\right)\Rightarrow\widehat{CAD}=\widehat{BCA}\Rightarrow\Delta IAC\)cân tại I

Làm tương tự bạn => tam giác IBD cân tại I ( tam giác ADB = tam giác CBD => Góc ADB= góc CBD)

a) Có \(\Delta ABC\)cân \(\Rightarrow AB=AC\)

Xét \(\Delta ABD\)và \(\Delta ACE\)có :

\(\widehat{EAD:}chung\)

\(AB=AC\)

\(\widehat{ABD}=\widehat{AEC}\left(gt\right)\)

\(\Rightarrow\Delta ABD=\Delta AEC\left(ch-gn\right)\)

\(\Rightarrow BD=CE\left(dpcm\right)\)

b)Xét \(\Delta BEC\)và \(\Delta CDB\)có :

\(CE=BD\left(cmt\right)\)

\(\widehat{BEC}=\widehat{CDB}=90^o\)

\(BC:chung\)

\(\Rightarrow\Delta BEC=\Delta CDB\left(ch-cgv\right)\)

\(\Rightarrow\widehat{BCE}=\widehat{CBD}\)

  • \(\Delta BHC\)có \(\widehat{BEC}=\widehat{CBD}\Rightarrow\Delta BHC\)cân tại \(H\)
13 tháng 2 2019

ai biet lam bai nay thi giup minh nhanh len nhe minh dang can gap

3 tháng 5 2019

6

a. Do tam giác ABC là tam giác đều nên CB = CA. Lại do CB = CD nên CD = CA, hay tam giác ACD cân tại C.

Khi đó do CE là đường cao nên đồng thời là trung tuyến. Vậy thì E là trung điểm AD, hay AE = DE.

Do ^ACB là góc ngoài tại đỉnh C của tam giác ACD nên ^ACB=2^CAD⇒^CAD=30o.

Vậy thì ^BAD=90o, hay tam gíac ABD vuông tại A.

b) Ta thấy ^FAD=^FAC+^CAD=30o+30o=60o.

Lại thấy FE là đường trung tuyến đồng thời là đường cao nên tam giác AFD cân. Tóm lại tam giác AFD đều.

Do C là giao của 3 đường cao trong tam giác đều FAD nên đồng thời nó cũng là trọng tâm tam giác.

3 tháng 5 2019

tam giác ABC đều (gt)

=> AB = AC = BC (đn)

mà BC = CD (gt)

=> AC = CD  

CE _|_ AD tại E 

AC là đường xiên của hình chiếu  AE

CD là đường xiên của hình chiếu CD 

=> AE = ED (đl)