K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2022

a, Xét t giác ABC cân tại A có AH là đường cao

=> AH là đường phân giác

=> góc EAH= góc FAH

xét Δ AEH và Δ AFH có

      góc AEH= góc AFH = 90 độ

      góc EAH= góc FAH

      chung AH

=> Δ AEH = Δ AFH ( cạnh huyền - góc nhọn)

b, Xét Δ AEH = Δ AFH=> AE= AF

xét Δ AEF có AE= AF => Δ AEF cân tại A

Xét Δ AEF cân tại A có AH là đường phân giác

=> AH cũng là trung trực

=> AH là trung trực của EF (đpcm)

c, có ME= EH=> E là tđ của MH

Có AE ⊥ MH tại tđ E của MH

=> AE là trung trực của MH

=> AM= AH (1)

có FH= FN=> F là tđ của HN

Có AF ⊥ HN tại tđ F của HN

=> AF là trung trực của HN

=> AH= AN (2)

Từ (1) và (2) => AM= AN

=> Δ AMN cân tại A

18 tháng 5 2022

Tham khảo

undefined

a: Xét ΔAEH vuông tại E và ΔAFH vuông tại F có

AH chung

góc EAH=góc FAH

Do đó: ΔAEH=ΔAFH

b: Ta có: AE=AF

HE=HF

Do đó: AH là đường trung trực của FE

c: Xét ΔAHM có

AE là đường cao

AE là đường trung tuyến

Do đo ΔAHM can tại A

=>AH=AM(1)

Xét ΔAHN có

AF là đường cao

AF là đường trung tuyến

Do đó: ΔAHN cân tại A

=>AH=AN(2)

Từ (1) và (2) suy ra AM=AN

a: Xét ΔAEH vuông tại E và ΔAFH vuông tại F có

AH chung

\(\widehat{EAH}=\widehat{FAH}\)

Do đó: ΔAEH=ΔAFH

b: ta có;ΔAEH=ΔAFH

nên AE=AF và HE=HF

=>AH là đường trung trực của HF

c: Xét ΔAHM có 

AE là đường cao

AE là đường trung tuyến

Do đó ΔAHM cân tại A

=>AM=AH(1)

Xét ΔAHN có 

AF là đường cao

AF là đường trung tuyến

Do đó: ΔAHN cân tại A

=>AH=AN(2)

Từ (1) và (2) suy ra AM=AN

hay ΔAMN cân tại A

Xét ΔAHM có

AE là đường cao

AE là đường trung tuyến

Do đó: ΔAHM cân tại A

mà AB là đường cao

nên AB là phân giác của góc HAM(1)

Xét ΔAHN có

AF là đường cao

AF là đường trung tuyến

Do đó: ΔAHN cân tại A

mà AC là đường cao

nên AC là tia phân giác của góc HAN(2)

Từ (1) và (2) suy ra \(\widehat{MAN}=\widehat{MAH}+\widehat{NAH}=2\cdot\widehat{BAC}=180^0\)

hay M,A,N thẳng hàng

Xét ΔAHB và ΔAMB có

AH=AM

\(\widehat{BAH}=\widehat{MAH}\)

AH chung

Do đó: ΔAHB=ΔAMB

Suy ra: \(\widehat{AHB}=\widehat{AMB}=90^0\)

hay BM\(\perp\)MA

hay BM\(\perp\)MN(3)

Xét ΔAHC và ΔANC có

AH=AN

\(\widehat{HAC}=\widehat{NAC}\)

AC chung

Do đó: ΔAHC=ΔANC

Suy ra: \(\widehat{AHC}=\widehat{ANC}=90^0\)

hay CN\(\perp\)NA

=>CN\(\perp\)NM(4)

Từ(3) và (4) suy ra MB//NC

Các pn cho mk hỏi chút nha!Các pn giúp mk nhéBài 1: Cho góc xOy=6o độ, điểm A nằm (.) góc xoy .Vẽ điểm B sao cho Ox là đg trung trực của AB,vẽ điểm C sao cho Oy là đg trung trực của ACa) CMR :OB=OCb)Tính số đo góc BOCBài 2:Cho tam giác ABC cân (AB=AC),đg cao AH.Gọi E là hình chieeus của H xuống AB; F là hình chiếu của H xuống AC.Chứng minh:a) Tam giác AEH= t giác AFHb) AH là trung trực của EFC)Trên tia đối của tia EH...
Đọc tiếp
  1. Các pn cho mk hỏi chút nha!

Các pn giúp mk nhé

Bài 1: Cho góc xOy=6o độ, điểm A nằm (.) góc xoy .Vẽ điểm B sao cho Ox là đg trung trực của AB,vẽ điểm C sao cho Oy là đg trung trực của AC

a) CMR :OB=OC

b)Tính số đo góc BOC

Bài 2:Cho tam giác ABC cân (AB=AC),đg cao AH.Gọi E là hình chieeus của H xuống AB; F là hình chiếu của H xuống AC.Chứng minh:

a) Tam giác AEH= t giác AFH

b) AH là trung trực của EF

C)Trên tia đối của tia EH lấy điểm M sao cho EH=RM.Trên tia đối của tia FH lấy điểm N scho FH= FN.Cto t giác AMN cân

Bài 3:Cho t giác ABC vuông tại A AB<AC. Trên cạnh BC lấy điểm D scho BD=BA. Kẻ AH vuông góc vs BC, kẻ DK vuông góc vs AC

a)CM góc BAD =góc BDA

b)CM AD là tia p giác của góc HAC

c)CM AK=AH

d)CM AB+AC<BC+AH

Bài 4:Cho t giác ABC vuông tại A, AB<AC. Đg t trực của đoạn BC cắt BC tại I , cắt AC tại H, cắt AB tại D. CMR:

a) T giác DBC là t giác cân

b) BH vuông góc vs DC

C) AH< HC

0