Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài này mình làm rồi nhé bạn.Để mình chỉ cho bạn nha
1)Xét tam giác BAE và tam giác BKE:
BEA = BEK = 90 độ
BE chung
ABE = KBE ( BE là phân giác của B )
=> Tam giác BAE = Tam giác BKE( g-c-g)
=> BA = BK( 2 cạnh tương ứng)
=> Tam giác ABK cân ở B
2)Xét tam giác ABD và tam giác KBD:
BA = BK ( cm trên)
ABD = KBD ( BD là phân giác của B)
BD chung
=> Tam giác ABD = Tam giác KBD ( c-g-c)
=> BAD = BKD = 90 độ
=>KDB = KDC = 90 độ
=> KD vuông góc với BC
3) Ta thấy : BAD + ADB + DBA = 180 độ
=> ADB + DBA = 90 độ (1)
Mà AIE = BIH ( 2 góc đối đỉnh)
Mà BIH + IHB +HBI = 180 độ
=> BIH + HBI = 90 độ (2)
Mà DBA = HBI ( BD là phân giác của B ) (3)
Từ (1),(2) và (3) => AID = ADI (4)
=> Tam giác DAI cân ở A
=> AI = AD
Xét tam giác vuông IAE (vuông ở E) và tam giác vuông DAE( vuông ở E)
AI = AD
AE chung
=> tam giác IAE = tam giác DAE(ch-cgv)
=> DAE = IAE ( 2 góc tương ứng)
=> AE là phân giác IAD
=> AK là phân giác HAC
4) Xét tam giác IAE và tam giác KAE:
AEI = KEI
EI chung
AE=EK(2 cạnh tương ứng)
=> Tam giác IAE = Tam giác KAE
=> AIE = KIE ( 2 góc tương ứng) (5)
Từ (4) và (5) =>KIE = EAD
Mà 2 góc này ở vị trí so le trong
=> IK song song với AC
Mình làm bài này là để bạn hiểu nha ko hiểu thì nói mình
(Dấu gạch ngang trên đầu thay cho dấu góc)
HUHUHUHU....... Lúc làm bài kiểm tra chưa nghĩ ra,h mới nghĩ ra
a) Xét ΔABE vuông tại A và ΔHBE vuông tại H có
BE chung
\(\widehat{ABE}=\widehat{HBE}\)(BE là tia phân giác của \(\widehat{ABC}\), H∈BC)
Do đó: ΔABE=ΔHBE(cạnh huyền-góc nhọn)
b) Ta có: ΔABC vuông tại A(gt)
⇒\(\widehat{ABC}+\widehat{ACB}=90^0\)(hai góc nhọn phụ nhau)
\(\Rightarrow\widehat{ACB}=90^0-\widehat{ABC}=90^0-60^0=30^0\)
Ta có: BE là tia phân giác của \(\widehat{ABC}\)(gt)
\(\Rightarrow\widehat{ABE}=\widehat{CBE}=\frac{\widehat{ABC}}{2}=\frac{60^0}{2}=30^0\)
Xét ΔEBC có \(\widehat{ECB}=\widehat{EBC}\left(=30^0\right)\)
nên ΔEBC cân tại E(định lí đảo của tam giác cân)
⇒EB=EC
Xét ΔEBH vuông tại H và ΔECH vuông tại H có
EB=EC(cmt)
EH chung
Do đó: ΔEBH=ΔECH(cạnh huyền-cạnh góc vuông)
⇒HB=HC(hai cạnh tương ứng)
c) Ta có: \(\widehat{BEC}\) là góc ngoài tại đỉnh E của ΔABE(EA và EC là hai tia đối nhau)
nên \(\widehat{BEC}=\widehat{BAE}+\widehat{ABE}\)(định lí góc ngoài của tam giác)
\(\Rightarrow\widehat{BEC}=90^0+30^0=120^0\)
Ta có: ΔEBH=ΔECH(cmt)
⇒\(\widehat{BEH}=\widehat{CEH}\)(hai góc tương ứng)
mà \(\widehat{BEH}+\widehat{CEH}=\widehat{BEC}\)(tia EH nằm giữa hai tia EB,EC)
nên \(\widehat{BEH}=\widehat{CEH}=\frac{\widehat{BEC}}{2}=\frac{120^0}{2}=60^0\)
\(\Leftrightarrow\widehat{KEH}=60^0\)
Ta có: HK//BE(gt)
⇒\(\widehat{BEH}=\widehat{KHE}\)(hai góc so le trong)
mà \(\widehat{BEH}=60^0\)(cmt)
nên \(\widehat{KHE}=60^0\)
Xét ΔKHE có
\(\widehat{KEH}=60^0\)(cmt)
\(\widehat{KHE}=60^0\)(cmt)
Do đó: ΔKHE đều(dấu hiệu nhận biết tam giác đều)
d) Xét ΔAEI vuông tại A có EI là cạnh huyền(EI là cạnh đối diện với \(\widehat{EAI}=90^0\))
nên EI là cạnh lớn nhất trong ΔAEI(trong tam giác vuông, cạnh huyền là cạnh lớn nhất)
hay EI>EA
mà EA=EH(ΔBAE=ΔBHE)
nên IE>EH(đpcm)
a.Xét \(\Delta ABD\) và \(\Delta EBD\) có:
\(\widehat{ABD}=\widehat{EBD}\) ( giả thiết)
BD - cạnh chung
\(\widehat{BAD}=\widehat{BED}\) ( = 90 do)
\(\Rightarrow\Delta ABD=\Delta EBD\left(c.h-g.n\right)\)
\(\Rightarrow AB=EB\) ( 2 cạnh tương ứng)
b.Xét \(\Delta ADF\) và \(\Delta EDC\) có:
\(\widehat{ADF}=\widehat{EDC}\) ( đối đỉnh)
AD = ED ( vi \(\Delta ABD=\Delta EBD\) )
\(\widehat{DAF}=\widehat{DEC}\) ( = 90 do)
\(\Rightarrow\Delta ADF=\Delta EDC\left(g.c.g\right)\)
=> DF = DC ( 2 cạnh tương ứng)
=> \(\Delta FDC\) cân tại D
c.Ta có:AB = EB (cm a)
=> \(\Delta ABE\) cân tại B
Mà BD là đường phân giác \(\widehat{ABE}\)
=> BD là đường trung trực của \(\Delta ABE\)
=> \(BD\perp AE\) (1)
Lại có: \(\Delta ADF=\Delta EDC\) ( cm b )
=>AF = EC ( 2 cạnh tương ứng)
Mà AB = BE => AB+AF=BE+EC
=> BF = BC. => \(\Delta BFC\) cân tại B
Mà BD là đường phân giác \(\widehat{ABC}\) hay \(\widehat{FBC}\)
=> BD là đường trung trực của \(\Delta FBC\)
=> \(BD\perp FC\) (2)
Từ (1),(2) => AE// FC ( dpcm)
Bai 4:(tu ke hinh nha!)
*Truong hop BC la canh huyen;
tam giac ABC vuong tai A .Ap dung dinh ly pytago ta co:
BC2=AB2+AC2
102=62+AC2
100=36+AC2
AC2=100-36
AC2=64
AC=8
*Truong hop AC la canh huyen
AC2=AB2+BC2
AC2=62+102
AC2=36+100
AC2=136
AC=CAN CUA 136
Vay AC bang :can 136:8
Bài 1 ( Hình tự kẻ )
a) Xét tam giác ABD và tam giác HBD, ta có:
góc BAD = góc BHD = 90 độ
BD là cạnh chung
góc ABD = góc HBD ( BD là đường phân giác của góc ABH )
=> tam giác ABD = tam giác HBD ( cạnh huyền - góc nhọn )
b) Xét tam giác ADE và tam giác HDC, ta có:
góc EAD = góc CHD = 90 độ
DA = DH ( vì tam giác ABD = tam giác HBD )
góc ADE = góc HDC ( đối đỉnh )
=> tam giác ADE = tam giác HDC ( cạnh góc vuông - góc nhọn )
=> góc AED = góc HCD ( 2 góc tương ứng )
** Mk chỉ có thể giúp dc đến đó thôi
a, xét tam giác ABH và tam giác ACK có : góc A chung
góc AKC = góc AHB = 90
AB =AC do tam giác ABC cân tại A (gt)
=> tam giác ABH = tam giác ACK (ch-gn)
b, tam giác ABH = tam giác ACK (Câu a)
=> AK = AH (đn)
AB = AC (câu a)
AK + KB = AB
AH + HC = AC
=> BK = CH
xét tam giác OBK và tam giác OCH có :
góc ABH = góc ACK do tam giác ABH = tam giác ACK (câu a)
góc BKO = góc CHO = 90
=> tam giác OBK = tam giác OCH (cgv-gnk)
thank you bn