Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có
BD là đường phân giác
nên \(\dfrac{AD}{DC}=\dfrac{AB}{BC}=\dfrac{AC}{BC}\left(1\right)\)
Xét ΔACB có
CE là đường phân giác
nên \(\dfrac{AE}{EB}=\dfrac{AC}{BC}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{AE}{EB}=\dfrac{AD}{DC}\)
hay ED//BC
Xét tứ giác BEDC có ED//BC
nên BEDC là hình thang
mà \(\widehat{EBC}=\widehat{DCB}\)
nên BEDC là hình thang cân
Sử dụng tính chất đường trung bình, ta chứng minh được DE//BC
Xét ΔABC có
\(\dfrac{AE}{AB}=\dfrac{AD}{AC}\)
Do đó: DE//CB
Xét tứ giác BEDC có DE//BC
nên BEDC là hình thang
mà \(\widehat{EBC}=\widehat{DCB}\)
nên BEDC là hình thang cân
bạn ơi bạn chứng minh sai rùi ở cuối ý nếu mà 2 góc đáy bằng nhau chưa chắc đã là hình thang cân đâu chẳng hạn hình vuông 2 đáy cũng = nhau ......
nên bạn cm sai rùi sửa lại đi bạn cm 2 đường chéo bằng nhau
a) Xét ΔABC có
BD là đường phân giác ứng với cạnh AC
nên \(\dfrac{AD}{DC}=\dfrac{AB}{BC}\)(1)
Xét ΔABC có
CE là đường phân giác ứng với cạnh AB
nên \(\dfrac{AE}{EB}=\dfrac{AC}{BC}\)(2)
Từ (1) và (2) suy ra \(\dfrac{AE}{EB}=\dfrac{AD}{DC}\)
hay ED//BC
Xét tứ giác BEDC có ED//BC(cmt)
nên BEDC là hình thang có hai đáy là ED và BC(Định nghĩa hình thang)
Hình thang BEDC(DE//BC) có \(\widehat{EBC}=\widehat{DCB}\)(ΔABC cân tại A)
nên BEDC là hình thang cân
a) Xét ΔKBC và ΔHCB có:
\(\widehat{BKC}=\widehat{CHB}=90\left(gt\right)\)
BC: cạnh chung
\(\widehat{KBC}=\widehat{HCB}\left(gt\right)\)
=> ΔKBC=ΔHCB(ch-gn)
=>BK=HC
b) Có: AB=AK+KB
AC=AH+HC
Mà: AB=AC(gt); BK=HC(gt0
=>AK=AH
=>ΔAKH cân tại A
=>\(\widehat{AKH}=\frac{180-\widehat{A}}{2}\) (1)
Vì ΔABC cân tại A
=>\(\widehat{ABC}=\frac{180-\widehat{A}}{2}\) (2)
Từ (1)(2) suy ra: \(\widehat{AKB}=\widehat{ABC}\) . Mà hai góc này ở vị trí đồng vị
=> KH//BC
Mà \(\widehat{B}=\widehat{C}\left(gt\right)\)
=>BCHK là hình thang cân
a) ta có tam giác ABC cân tại A => hai đường cao BH vafCK cũng bằng nhau
b) ta có tam giác HBC = tam gác KCB
=> BK=CH
mặt khác KH//BC
=> BCHK là hình thang cân
c) góc BAC=40
=> B=C=(180-40):2=70
ta có K+B=180
=> K=H=180-70=110
a: Xét ΔABC có
\(\dfrac{AE}{EB}=\dfrac{AD}{DC}\left(=1\right)\)
Do đó: DE//BC
Xét tứ giác BEDC có DE//BC
nên BEDC là hình thang
mà \(\widehat{EBC}=\widehat{DCB}\)
nên BEDC là hình thang cân
b: \(\widehat{EBC}=\widehat{DCB}=\dfrac{180^0-40^0}{2}=70^0\)
\(\widehat{BED}=\widehat{CDE}=180^0-70^0=110^0\)
Bạn tự vẽ hình
a) Có tg ABC cân tại A
=>góc ABC=góc ACB
có BD là trung tuyến => D là tđ
có CE là trung tuyến =>E là tđ
Xét tg ABC có
E là tđ AB
D là tđ AC
=> ED là đg tb
=> ED//BC
=> EDBC là hình thg
mà góc ABC= góc ACB(cmt)
=>EDBC là hình thg cân
b) góc A+góc B+ góc C=180
=>40+B+C+180
Mà B=C (cmt)
B=C= (180-40)/2
B=C=70 độ
B+D=90độ
=>D=20 độ
=> E=20 độ( EDBC cân)