Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Ta có: KI\(\perp\)BC(gt)
AH\(\perp\)BC(gt)
Do đó: KI//AH(Định lí 1 từ vuông góc tới song song)
Suy ra: \(\widehat{HAI}=\widehat{KIA}\)(hai góc so le trong)(1)
Ta có: ΔABK=ΔIBK(cmt)
nên KA=KI(hai cạnh tương ứng)
Xét ΔKAI có KA=KI(cmt)
nên ΔKAI cân tại K(Định nghĩa tam giác cân)
Suy ra: \(\widehat{KAI}=\widehat{KIA}\)(hai góc ở đáy)(2)
Từ (1) và (2) suy ra \(\widehat{HAI}=\widehat{KAI}\)
\(\Leftrightarrow\widehat{HAI}=\widehat{CAI}\)
Suy ra: AI là tia phân giác của \(\widehat{HAC}\)(Đpcm)
a) Xét ΔABK vuông tại A và ΔIBK vuông tại I có
BK chung
\(\widehat{ABK}=\widehat{IBK}\)(BK là tia phân giác của \(\widehat{ABI}\))
Do đó: ΔABK=ΔIBK(Cạnh huyền-góc nhọn)
a: Xét ΔAIB và ΔAIC có
AI chung
IB=IC
AB=AC
Do đó: ΔAIB=ΔAIC
b: Ta có: ΔABC cân tại A
mà AI là đường trung tuyến
nên AI là đường cao
Ta có: I là trung điểm của BC
nên IB=IC=3cm
=>AI=4cm
a: \(\widehat{CAI}+\widehat{BAI}=90^0\)
\(\widehat{CIA}+\widehat{HAI}=90^0\)
mà \(\widehat{BAI}=\widehat{HAI}\)
nên \(\widehat{CAI}=\widehat{CIA}\)
hay ΔCIA cân tại C
b: Xét ΔBAD có
BH là đường cao
BH là đường trung tuyến
Do đó: ΔBAD cân tại B
Xét ΔIAD có
IH là đường cao
IH là đường trung tuyến
Do đó: ΔIAD cân tại I
Ta có: \(\widehat{IDA}=\widehat{IAD}\)
\(\widehat{IDB}=\widehat{IAB}\)
mà \(\widehat{IAD}=\widehat{IAB}\)
nên \(\widehat{IDA}=\widehat{IDB}\)
hay DI là tia phân giác của góc BDA
a: Xét ΔAIB và ΔAIC có
AI chung
AB=AC
IB=IC
Do đó: ΔAIB=ΔAIC
Tham khảo:
a/ Áp dụng định lí Pytago vào tam giác vu6ong ABC ta được:
AB2=BC2-AC2=102-82=62
=> AB=6 cm.
b/ Xét tam giác ABI và tam giác DBI có:
BI chung
Góc IAB=IDB=90 độ
Góc IBA=IBD(phân giác IB)
=> Tam giác ABI=tam giác DBI(ch-gn)
c/ Gọi O là giao điểm AD và IB.
Vì tam giác ABI=tam giác DBI(câu b)
=> AB=BD(cạnh tương ứng)
Xét tam giác OBA và tam giác OBD có:
BO chung
Góc OBD=OBA(phân giác BI)
AB=BD(cmt)
=> Tam giác OBA=tam giác OBD(c-g-c)
=> OA=OD(cạnh tương ứng) và Góc AOB=DOB=180/2=90 độ
=> BI là đường trung trực của AD.
d/ Xét tam giác IAE và tam giác IDC có:
Góc AIE=DIC(đối đỉnh)
Góc IAE=IDC=90 độ
IA=ID(cạnh tương ứng của tam giác ABI=tam giác DBI)
=> Tam giác IAE=tam giác IDC(g-c-g)
=> AE=DC(cạnh tương ứng)
Mà AB=BD
=> BE=BC hay Tam giác BEC cân tại B
=> Góc BDA=BCE và 2 góc đó ở vị trí đồng vị nên AD//EC
Mà BI vuông góc với AD nên BI cũng vuông góc với EC.
Gọi N là giao điểm của BI và EC.
a)Xét tam giác AIB và tam giác AIC
AB=AC(do tam giác ABC cân)
B=C(do tam giác ABC cân)
AI là cạnh chung
\(\Rightarrow\)tam giác AIB = tam giác AIC(c.g.c)
b)Vì tam giác AIB = tam giác AIC(c.g.c)
\(\Rightarrow\)AIB=AIC(cặp góc tương ứng)
Mà AIB+AIC=1800(kề bù)
\(\Rightarrow\)AIB=AIC=1800:2=900
Do đó AI\(\perp\)BC
Vậy AI là đường cao của tam giác AIC
Bài này lớp 6 cũng làm được bạn ạ quá dễ