Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xet ΔABD vuông tại B và ΔAED vuông tại E có
AD chung
góc BAD=góc EAD
=>ΔABD=ΔAED
=>AB=AE và DB=DE
=>AD là trung trực của BE
b: Xét ΔAEF vuông tại E và ΔABC vuông tại B có
AE=AB
góc EAF chung
=>ΔAEF=ΔABC
=>AF=AC
Xet ΔADF và ΔADC có
AD chung
góc DAF=góc DAC
AF=AC
=>ΔADF=ΔADC
c: ΔCBF vuông tại B
mà BM là trung tuyến
nên MB=MF
Tg ABD =tg EBD ( cm trên) •> AD=DE( 2 cạnh tương ứng) (1)
Tg ADF vg tại A=> Góc A lớn nhất=> FD lớn nhất( Qh giữa góc và cạnh đối diện trong 1 tam giác)=> AD<FD(2)
Từ 1 và 2 => ED<FD
a) Tam giác ABC vuông tại A => AB2+AC2=BC2 ( theo định lý Pitago)
=> 62+Ac2=102 =>AC2=100-36=64=> AC= 8
Vì D nằm trên AC=> AD+DC= AC=> 3+DC=8=> DC=5(cm)
a) Xét tam giác ABC ta có
BC2=52=25
AB2+AC2=25
->BC2=AC2+AB2->tam giác ABC vuông tại A ( đinh lý pitago đảo)
b) xét tam giác BAD và tam giác EDA ta có
BD=AE (gt)
AD=AD ( cạnh chung)
góc BDA = góc EAD ( 2 góc sole trong và AE//BD)
-> tam giac BAD= tam giac EDA (c-g-c)
=> AB=DE ( 2 cạnh tương ứng)
c)ta có
góc CAD+ góc BAD =90 (2 góc kề phụ)
góc CDA+ góc DAH=90 ( tam giác ADH vuông tại H)
góc BAD=góc DAH ( AD là tia p./g góc BAH)
->góc CAD=góc CDA
-> tam giác ADC cân tại C
d) Xét tam giác ADC cân tại C ta có
CM là đường trung tuyến ( M là trung điểm AD)
-> CM là đường cao
ta có
góc BAD= góc ADE ( tam giác BAD= tam giác EDA)
mà 2 góc nằm ở vị trí sole trong nên AB//DE
mặt khác AB vuông góc AC ( tam giác ABC vuông tại A)
do đó DE vuông góc AC
Gọi F là giao điểm DE và AC
Xét tam giác CAD ta có
DF là đường cao (DE vuông góc AC tại F)
AH là đường cao (AH vuông góc BC)
AH cắt DE tại I (gt)
-> I là trực tâm
mà CM cũng là đường cao tam giác ACD (cmt)
nên CM đi qua I
-> C,M ,I thẳng hàng
ghhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
mấy bạn bớt nhắn linh tinh lên đây đi, olm là nơi học bài và hỏi bài chứ không phải nhắn lung tung
Bạn xét tam giác ead và tg fad =nhau rồi suy ra ae = af