Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a),b) Áp dụng tslg trong tam giác ABC vuông tại A:
\(\left\{{}\begin{matrix}sinB=\dfrac{AC}{BC}=\dfrac{12}{13}\\sinC=\dfrac{AB}{BC}=\dfrac{5}{13}\end{matrix}\right.\)
c) Ta có: \(sinB=\dfrac{12}{13}\Rightarrow\widehat{B}\approx67^0\)
\(sinC=\dfrac{5}{13}\Rightarrow\widehat{C}\approx23^0\)
ta có \(AH=\sqrt{AB^2-BH^2}=\sqrt{10^2-6^2}=8cm\)
khi đó \(sinABC=\frac{AH}{AB}=\frac{8}{10}=\frac{4}{5}\)
ta có \(BK.AC=AH.BC=2S_{ABC}\Rightarrow BK=\frac{AH.BC}{AC}=\frac{36}{5}cm\)
nên \(sinBAC=\frac{BK}{BA}=\frac{18}{25}\)
\(\dfrac{AB}{AC}=\dfrac{3}{4}\Leftrightarrow AB=\dfrac{3}{4}AC\)
Ta có \(AB^2+AC^2=\dfrac{9}{16}AC^2+AC^2=BC^2\left(pytago\right)\)
\(\Leftrightarrow\dfrac{25}{16}AC^2=100\Leftrightarrow AC^2=100\cdot\dfrac{16}{25}=64\\ \Leftrightarrow AC=8\left(cm\right)\Leftrightarrow AB=\dfrac{3}{4}\cdot8=6\left(cm\right)\)
\(\sin B=\dfrac{AC}{BC}=\dfrac{4}{5}\\ \sin C=\dfrac{AB}{BC}=\dfrac{3}{5}\)
\(S_{ABC}=\frac{bc\sin A}{2}=\frac{ac\sin B}{2}=\frac{ab\sin C}{2}=\frac{abc}{4R}\)
+ Từ \(\frac{bc\sin A}{2}=\frac{ac\sin B}{2}\Rightarrow b\sin A=a\sin B\Rightarrow\frac{a}{\sin A}=\frac{b}{\sin B}\left(1\right)\)
+ Từ \(\frac{ac\sin B}{2}=\frac{ab\sin C}{2}\Rightarrow c\sin B=b\sin C\Rightarrow\frac{b}{\sin B}=\frac{c}{\sin C}\left(2\right)\)
+ Từ \(\frac{bc\sin A}{2}=\frac{abc}{4R}\Rightarrow\sin A=\frac{a}{2R}\Rightarrow\frac{a}{\sin A}=2R\left(3\right)\)
Từ (1) (2) (3) \(\Rightarrow\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R\left(dpcm\right)\)
Từ A kẻ đường cao AH (H thuộc BC) , Từ B kẻ đường cao BK (K thuộc AC)
Ta có : ; ;
;
(1)
Lại có :
(2)
Từ (1) và (2) ta có : (Đpcm)
Vì tam giác ABC cân tại A nên AE là đường cao đồng thời là đường trung tuyến
=> E là trung điểm BC => EB = EC = 5
Xét ABE vuông tại E có:
Mặt khác:
Xét ABH vuông tại H có:
Đáp án cần chọn là: A