K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2021

a) BD là phân giác ^B (gt) => ^ABD = ^DBC = \(\dfrac{1}{2}\) ^B

    CE là phân giác ^C (gt) => ^ACE = ^ECB = \(\dfrac{1}{2}\) ^C

Lại có: ^B = ^C (tam giác ABC cân tại A)

=> ^ABD = ^DBC = ^ACE = ^ECB

Xét tam giác ABD và tam giác ACE:

^A chung

AB = AC (tam giác ABC cân tại A)

^ABD = ^ACE (cmt)

=> Tam giác ABD = Tam giác ACE (g - c - g)

=> AD = AE (2 cạnh tương ứng)

b) Xét tam giác ADE có: AD = AE (tam giác ABD = tam giác ACE)

=> Tam giác ADE cân tại A

=> ^ADE = ^AED = \(\dfrac{180^o-gócA}{2}\) (1)

Tam giác ABC cân tại A (gt) => ^B = ^C = \(\dfrac{180^o-gócA}{2}\) (2)

Từ (1) và (2) => ^ADE = ^AED = ^B = ^C

Ta có: ^ADE = ^C (cmt)

Mà 2 góc này ở vị trí đồng vị

=> DE // BC (dhnb)

c) Xét tam giác OBC có: ^DBC = ^ECB (cmt)

=>  Tam giác OBC cân tại O

d)  Xét tam giác EBC và tam giác DCB có:

^B = ^C (tam giác ABC cân tại A)

BC chung

^ECB = ^DBC (cmt)

=> Tam giác EBC = Tam giác DCB (g - c - g)

=> EC = DB (2 cạnh tương ứng)

Ta có: EC = EO + OC

           DB = DO + OB

Mà  EC = DB (cmt); OC = OB (Tam giác OBC cân)

=> EO = DO

=> Tam giác OED cân tại O

 

 

*tự vẽ hình 

A )Vì

BD là phân giác góc ABC và CE là phân giác góc ACB nên góc ABD=góc ACE

Tam giác ADB và Tam giác AEC có 

AB=AC(gt)

Góc A chung

góc ABD=góc ACE

suy ra Tam giác ADB =Tam giác AEC(cgc) nên AD=AE

B

a) Ta có: \(\widehat{ABD}=\widehat{CBD}=\dfrac{\widehat{ABC}}{2}\)(BD là tia phân giác của \(\widehat{ABC}\))

\(\widehat{ACE}=\widehat{BCE}=\dfrac{\widehat{ACB}}{2}\)(CE là tia phân giác của \(\widehat{ACB}\))

mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)

nên \(\widehat{ABD}=\widehat{CBD}=\widehat{ACE}=\widehat{BCE}\)

Xét ΔABD và ΔACE có

\(\widehat{ABD}=\widehat{ACE}\)(cmt)

AB=AC(ΔABC cân tại A)

\(\widehat{BAD}\) chung

Do đó: ΔABD=ΔACE(g-c-g)

Suy ra: AD=AE(Hai cạnh tương ứng)

b) Xét ΔADE có AE=AD(cmt)

nên ΔADE cân tại A(Định nghĩa tam giác cân)

\(\Leftrightarrow\widehat{AED}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy của ΔADE cân tại A)(1)

Ta có: ΔABC cân tại A(cmt)

nên \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy của ΔABC cân tại A)(2)

Từ (1) và (2) suy ra \(\widehat{AED}=\widehat{ABC}\)

mà \(\widehat{AED}\) và \(\widehat{ABC}\) là hai góc ở vị trí đồng vị

nên ED//BC(Dấu hiệu nhận biết hai đường thẳng song song)

c) Ta có: \(\widehat{DBC}=\widehat{ECB}\)(cmt)

nên \(\widehat{OBC}=\widehat{OCB}\)

Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)(cmt)

nên ΔOBC cân tại O(Định lí đảo của tam giác cân)

d) Ta có: \(\widehat{OBC}=\widehat{OCB}\)(cmt)

mà \(\widehat{OBC}=\widehat{ODE}\)(hai góc so le trong, ED//BC)

và \(\widehat{OCB}=\widehat{OED}\)(hai góc so le trong, ED//BC)

nên \(\widehat{OED}=\widehat{ODE}\)

Xét ΔODE có \(\widehat{OED}=\widehat{ODE}\)(cmt)

nên ΔODE cân tại O(Định lí đảo của tam giác cân)

a: \(\widehat{B}+\widehat{C}=130^0\)

\(\Leftrightarrow\widehat{IBC}+\widehat{ICB}=\dfrac{130^0}{2}=65^0\)

hay \(\widehat{BIC}=115^0\)

b: Xét ΔDAI có \(\widehat{DAI}=\widehat{DIA}\)

nên ΔDAI cân tại D

a: \(\widehat{B}+\widehat{C}=130^0\)

\(\Leftrightarrow\widehat{IBC}+\widehat{ICB}=\dfrac{130^0}{2}=65^0\)

hay \(\widehat{BIC}=115^0\)

b: Xét ΔDAI có \(\widehat{DAI}=\widehat{DIA}\)

nên ΔDAI cân tại D

9 tháng 5 2021

A B C D

a) Xét ABD và EBD có

        BD cạnh chung

        BAD=BED(=90)

        ABD=EBD(vì BD là tia phân giác của B)

b ko biet

 

9 tháng 5 2021

b)Vì theo ý a) BAD=BED và BD là tia phân giác của B. Nên ADE là tam giác cân

a: Xét ΔCDF vuông tại D và ΔCDK vuông tại D có

CD chung

góc FCD=góc KCD
=>ΔCDF=ΔCDK

b: Xét ΔEDC có góc EDC=góc ECD

nên ΔECD cân tại E

=>EC=ED

=>góc ECD=góc EDC

=>góc EDK=góc EKD

=>ΔKED cân tại E

19 tháng 2 2022

a. xét tam giác vuông ADE và tam giác vuông ADF,có :

AB = AC ( ABC cân )

Góc EAD = góc FAD ( gt )

AD : cạnh chung

Vậy  tam giác vuông ADE = tam giác vuông ADF ( c.g.c )

=> DE = DF ( 2 cạnh tương ứng )

b. xét tam giác vuông BDE và tam giác vuông CDF, có:

góc B = góc C ( ABC cân )

BD = CD ( AD là đường phân giác cũng là đường trung tuyến trong tam giác cân ABC )

Vậy tam giác vuông BDE = tam giác vuông CDF ( cạnh huyền. góc nhọn)

c. ta có: AD là đường phân giác trong tam giác cân ABC cũng là đường trung trực của BC

 

a: Xét ΔAED vuông tại E và ΔAFD vuông tại F có

AD chung

\(\widehat{EAD}=\widehat{FAD}\)

Do đó: ΔAED=ΔAFD

SUy ra: DE=DF

b: Xét ΔBDE vuông tại E và ΔCDF vuông tại F có 

BD=CD

DE=DF

Do đó: ΔBDE=ΔCDF

c: Ta có: ΔABC cân tại A

mà AD là phân giác

nên AD là đường trung trực của BC