K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét tam giác AHB và tam giác AKC có :

  A chung 

góc AKC = AHB = 90 o

AB = AC ( tam giác cân )

=> AHB = AKC ( c . g . c )

=> AH = AK ( 2 cạnh t/ ứng )

a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC
góc A chung

=>ΔAHB=ΔAKC

=>AH=AK

b: Xét ΔABC có

BH,CK là đường cao

BH cắt CK tại I

=>I là trực tâm

=>IM vuông góc BC

ΔICB cân tại I

mà IM là đường cao

nên IM là phân giác của góc BIC

c: Xét ΔABC có AK/AB=AH/AC
nên KH//BC

a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC
góc HAB chung

=>ΔAHB=ΔAKC

=>AH=AK

b:

Xét ΔABC có

BH,CK là đường cao

BH cắt CK tại I

=>I là trực tâm

=>AI vuông góc BC tại M

Xét ΔKBC vuông tạiK và ΔHCB vuông tại H có

BC chung

KC=HB

=>ΔKBC=ΔHCB

=>góc IBC=góc ICB

=>ΔIBC cân tại I

mà IM là đường cao

nên IM là phân giác

c: Xet ΔBAC có AK/AB=AH/AC
nên KH//BC

a: Xét ΔABH vuông tại H và ΔACK vuông tại K có

AB=AC
\(\widehat{BAH}\) chung

Do đó: ΔABH=ΔACK

b: Ta có: ΔABH=ΔACK

nên AH=AK

Xét ΔAKI vuông tại K và ΔAHI vuông tại H có

AI chung

AK=AH

DO đó: ΔAKI=ΔAHI

Suy ra: \(\widehat{KAI}=\widehat{HAI}\)

hay AI là tia phân giác của góc BAC

a) Xét ΔBHM vuông tại H và ΔCKM vuông tại K có 

MB=MC(M là trung điểm của BC)

\(\widehat{BMH}=\widehat{CMK}\)(hai góc đối đỉnh)

Do đó: ΔBHM=ΔCKM(cạnh huyền-góc nhọn)

⇒BH=CK(hai cạnh tương ứng)

b) Vì AB//CD(gt)

nên \(\widehat{ABM}=\widehat{DCM}\)(hai góc so le trong)

Xét ΔABM và ΔDCM có

\(\widehat{ABM}=\widehat{DCM}\)(cmt)

BM=CM(M là trung điểm của BC)

\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)

Do đó: ΔABM=ΔDCM(c-g-c)

⇒AM=DM(hai cạnh tương ứng)

Xét ΔAMC và ΔDMB có

AM=DM(cmt)

\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)

MC=MB(M là trung điểm của BC)

Do đó: ΔAMC=ΔDMB(c-g-c)

\(\widehat{CAM}=\widehat{BDM}\)(hai góc tương ứng)

mà \(\widehat{CAM}\) và \(\widehat{BDM}\) là hai góc ở vị trí so le trong

nên AC//BD(Dấu hiệu nhận biết hai đường thẳng song song)

9 tháng 3 2022

các bạn giúp mk phần c thôi nhé

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó: ΔAHB=ΔAHC

b: Xét ΔAKH vuông tại K và ΔAFH vuông tại F có

AH chung

\(\widehat{KAH}=\widehat{FAH}\)

Do đó: ΔAKH=ΔAFH

Suy ra: HK=HF

c: Xét ΔABC có AK/AB=AF/AC

nên KF//BC