Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét tam giác BMC có:
CA vuông góc với BM (gt) => CA đường cao tam giác BMC
MK vuông góc với BC (cmt) => MK đường cao tam giác BMC
Mà CA cắt MK tại D (gt)
từ 3 điều đó => BD là đường cao thứ 3 của tam giác BMC
=> BD vuông góc với CM ( t/c )
k nha,
a) Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC(ΔBAC cân tại A)
AH chung
Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)
b) Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+BH^2\)
\(\Leftrightarrow AB^2=4^2+3^2=25\)
hay AB=5(cm)
Vậy: AB=5cm
Lần sau chép đề cẩn thận nhé. Sai tùm lum.
a, ΔAHB = ΔAHC.
Xét hai tam giác vuông AHB và AHC có:
AB = AC (hai cạnh bên)
^B = ^C (hai góc ở đáy)
Do đó: ΔAHB = ΔAHC (cạnh huyền - góc nhọn)
b, ΔDHC cân. DM//AH. (sửa M là trung điểm HC nhé ! )
Vì HD//BA (gt) => ^B = ^H1 (đồng vị)
Mà ^B = ^C => ^H1 = ^C => ΔDHC cân tại D (hai góc ở đáy)
Xét ΔDHM và ΔDCM có:
DH = DC (hai cạnh bên)
HM = MC (M là trung điểm của HC)
DM : chung
Do đó: ΔDHM = ΔDCM (c.c.c)
=> ^M1 = ^M2 (hai góc tương ứng)
Mà ^M1 + ^M2 = 180o (kề bù)
=> ^M1 = ^M2 = 180o : 2 = 90o hay DM ⊥ BC.
Vậy DM // AH (cùng vuông góc với BC).
c, G là trọng tâm ΔABC. AH + BD > 3HD.
Ta có: ^H2 = ^A1 (so le trong)
Mà ^A1 = ^A2 (hai góc tương ứng)
=> ^H2 = ^A2 => ΔHDA cân tại D (hai góc ở đáy)
=> DA = DH (hai cạnh bên)
Vì DH = DC (hai cạnh bên)
DA = DH (hai cạnh bên)
=> DA = DC
=> BD là trung tuyến ứng với cạnh bên AC.
Vì BH = HC (hai cạnh tương ứng) => AH là trung tuyến ứng với cạnh đáy BC.
Mà AC cắt BC tại G => CG là trung tuyến ứng với cạnh bên AB
=> G là trọng tâm của ΔABC.
(Bạn tự vẽ hình giùm)
a/ \(\Delta ABH\)vuông và \(\Delta ACH\)vuông có: AB = AC (\(\Delta ABC\)cân tại A)
Cạnh AH chung
=> \(\Delta ABH\)vuông = \(\Delta ACH\)vuông (cạnh huyền - góc nhọn)
b/ \(\Delta ABH\)vuông tại A => AB2 = AH2 + HB2 (định lý Pitago)
=> AB2 = 42 + 32
=> AB2 = 16 + 9
=> AB2 = 25
=> AB = \(\sqrt{25}\)= 5 (cm)
c/ Ta có \(\Delta ABC\)cân tại A
=> Đường cao AH cũng là đường trung tuyến
Ta lại có: H là trung điểm của AC
và HM // AC
=> M là trung điểm của AB
và G là giao điểm của hai đường trung tuyến AH và CG của \(\Delta ABC\)
=> G là trọng tâm \(\Delta ABC\)
=> \(AG=\frac{2}{3}AH\)(tính chất trọng tâm của tam giác)
=> \(AG=\frac{2}{3}.4=\frac{8}{3}\)(cm)
cảm ơn bn nhưng mình cần câu d thui