Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nguyễn Diệu Linh.
Cho tam giác ABC cân tại A (góc A < 90 độ). Kẻ BD vuông góc AC (D thuộc AC), CE vuông góc AB (E thuộc AB), BD và CE cắt nhau tại H. a) Chứng minh BD = CE. b) Chứng minh tam giác BHC cân. c) Chứng minh AH là đường trung trực của BC. d) Trên tia BD lấy điểm K sao cho D là trung điểm của BK. So sánh góc ECB và góc DKC - Toán học Lớp 7 - Bài tập Toán học Lớp 7 - Giải bài tập Toán học Lớp 7 | Lazi.vn - Cộng đồng Tri thức & Giáo dục
cho hình chữ nhật ABCD ,đường chéo BD.Từ A ve AH vuong goc BD(H thuocB) a)CM tam giac HAD dong dang tam giac CDB b)CM AH.BD=AD.AB c) cho BH=9cm,HD=16cm.Tinh dien h tam giac ABC.
GT tam giác ABC cân
\(\widehat{A}< 90^o\)
\(BD\perp AC\left(D\in AC\right)\)
\(CE\perp AB\left(E\in AB\right)\)
BD và CE cắt nhau tại H
KL : BD = CD
tam giác BHC cân
AH là đường trung trực của BC
a) Xét tam giác BDC và tam giác CEB có
\(\widehat{BDC}=\widehat{CEB}=90^o\)
BC cạnh chung
\(\widehat{H_1}=\widehat{H_3}\)( 2 góc kề bù )
=> tam giác BDC = tam giác CEB (g-c-g)
=> BD = CE ( 2 cạnh tương ứng )
b) Vì tam giác ABC là tam giác cân
=> \(\widehat{B}=\widehat{C}\)
Vì \(\widehat{B}=\widehat{C}\)
=> tam giác BHC cân
c) Kẻ AH
chép tại https://olm.vn/hoi-dap/detail/79620623509.html :v
a. xét tam giác ABD và tam giác ACE có
BDA=CEA=90 độ
AB=AC (do tam giác ABC cân tai A)
Chung góc A
Suy ra: tam giác ABD= tam giác ACE
Suy ra: BD=CE (hai cạnh tương ứng)
A) Xét tam giác BEC và tam giác CDB có :
\(\widehat{BEC}\)=\(\widehat{CDB}\)=\(90^0\)
\(BC\)chung
\(\widehat{EBC}\)=\(\widehat{DCB}\)( giả thiết )
\(\Rightarrow\Delta EBC=\Delta DCB\left(G-C-G\right)\)
Vậy \(BD=CE\) ( hai canh tương ứng )
B) Xét tam giác DHC và tam giác EHC có :
\(\widehat{EBH}\) =\(\widehat{DCH}\)( vì góc CDH=góc BEB ; góc EHB = góc DHC )
EB=DC ( theo phần a )
\(\widehat{HEB}\)=\(\widehat{CDH}\)=900
\(\Rightarrow\)\(\Delta EHB=\Delta DHC\left(G-C-G\right)\)
\(\Rightarrow BB=HC\)( HAI CẠNH TƯƠNG ỨNG )
\(\Rightarrow\Delta BHC\)cân ( định lí tam giác cân )
C) Ta có : AB =AC ( giả thiêt )
Vậy góc A cách đều hai mút B và C
Vậy AH là đường trung trực của BC
d)Xét tam giác BDC và tam giác KDC có :
DK=DB ( GT )
CD ( chung )
suy ra tam giác BDC =tam giác KDC ( cạnh huyền - cạnh góc vuông )
\(\Rightarrow\) \(\widehat{BCD}\)=\(\widehat{KCD}\)( HAI GÓC TƯƠNG ỨNG )
Mà ta lai có góc EBC = góc BCD theo giả thiết )
\(\Rightarrow\)\(\widehat{EBC}\)=\(\widehat{EBC}\)
chúc bạn hok giỏi
a) Xét tam giác ABD và tam giác ACE
BDA = CEA = 90 độ
AB = AC
chung góc A
=>.Tam giác ABD = Tam giác ACE(ch-gn)
=> BD = CE (2 cạnh tương ứng)
b)=> AD = AE ( 2 cạnh tương ứng)
Mà AB = AC
=> BE = CD
Xét tam giác EBC và tam giác DBC:
BE = CD
BD = CE
BC chung
=>Tam giác EBC = Tam giác DBC (c-c-c)
=>BH = CH(2 cạnh tương ứng)
=>Tam giác BHC cân
c)BE,CD là các đường cao của tam giác ABC
Mà BE và CD cắt nhau ở H
=> AH là đường cao của tam giác ABC
Gọi I là giao điểm của AH và BC
Xét tam giác BAH và tam giác CAH
AIB = AIC = 90 độ
AB = AC
AI chung
=>Tam giác BAH = Tam giác CAH (ch-cgv)
=>BI = CI ( 2 cạnh tương ứng)
Mà AH là đường cao của tam giác ABC =>AI là đường cao của tam giác ABC
=> AI là đường trung trực của BC
=>AH là đường trung trực của BC
d)DKC + CDK + KCD =180 độ
DKC = 90 độ - KCD
ECB + BEC + CBE = 180 độ
BEC =90 độ - CBE
Mà EBC = DCB
=> ECB > DCK
=>90 độ - ECB < 90 độ - DCK
=>ECB < DKC
a) Xét tam giác ABD và tam giác ACE BDA = CEA = 90 độ AB = AC chung góc A =>.Tam giác ABD = Tam giác ACE(ch-gn) => BD = CE (2 cạnh tương ứng) b)=> AD = AE ( 2 cạnh tương ứng) Mà AB = AC => BE = CD Xét tam giác EBC và tam giác DBC: BE = CD BD = CE BC chung =>Tam giác EBC = Tam giác DBC (c-c-c) =>BH = CH(2 cạnh tương ứng) =>Tam giác BHC cân c)BE,CD là các đường cao của tam giác ABC Mà BE và CD cắt nhau ở H => AH là đường cao của tam giác ABC Gọi I là giao điểm của AH và BC Xét tam giác BAH và tam giác CAH AIB = AIC = 90 độ AB = AC AI chung =>Tam giác BAH = Tam giác CAH (ch-cgv) =>BI = CI ( 2 cạnh tương ứng) Mà AH là đường cao của tam giác ABC =>AI là đường cao của tam giác ABC => AI là đường trung trực của BC =>AH là đường trung trực của BC d)DKC + CDK + KCD =180 độ DKC = 90 độ - KCD ECB + BEC + CBE = 180 độ BEC =90 độ - CBE Mà EBC = DCB => ECB > DCK =>90 độ - ECB < 90 độ - DCK =>ECB < DKC
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC
góc BAD chung
=>ΔADB=ΔAEC
=>BD=CE
b: góc ABD=góc ACE
=>góc HBC=góc HCB
=>ΔHBC cân tại H
c: AB=AC
HB=HC
=>AH là trung trực của BC