Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1
\(\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow AB=\dfrac{3}{.4}AC\)
Theo pytago xét tam giác ABC vuông tại A có:
\(\sqrt{AB^2+AC^2}=BC^2\\ \Rightarrow\sqrt{\left(\dfrac{3}{4}AC\right)^2+AC^2}=10\\ \Rightarrow AC=8\\ \Rightarrow AB=\dfrac{3.8}{4}=6\)
Theo hệ thức lượng xét tam giác ABC vuông tại A, đường cao AH có:
\(AB^2=BH.BC\\ \Leftrightarrow BH=\dfrac{AH^2}{BC}=\dfrac{6^2}{10}=3,6\)
2
\(\dfrac{AB}{AC}=\dfrac{27}{4}\Rightarrow AB=\dfrac{27}{4}AC\)
\(BC=\sqrt{AB^2+AC^2}=\sqrt{\left(\dfrac{27}{4}AC\right)^2+AC^2}=\dfrac{\sqrt{745}AC}{4}\) ( Theo pytago trong tam giác ABC vuông tại A)
Theo hệ thức lượng trong tam giác ABC vuông tại A, đường cao AH có:
\(AH.BC=AB.AC\\ \Leftrightarrow33,6.\dfrac{\sqrt{745}}{4}AC=\dfrac{27}{4}AC.AC\\ \Rightarrow AC=\dfrac{56\sqrt{745}}{45}\)
\(\Rightarrow\left\{{}\begin{matrix}AB=\dfrac{27}{4}.\dfrac{56\sqrt{745}}{45}=\dfrac{42\sqrt{745}}{5}\\BC=\dfrac{\sqrt{745}}{4}.\dfrac{56\sqrt{745}}{45}=\dfrac{2086}{9}\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}AC\approx33,97\\AB\approx229,28\\BC\approx231,78\end{matrix}\right.\)
3
`BC=HB+HC=36+64=100`
Theo hệ thức lượng có (trong tam giác ABC vuông tại A đường cao AH):
\(AH^2=HB.HC\\ \Rightarrow AH=\sqrt{36.64}=48\)
\(AB=\sqrt{HB.BC}=\sqrt{36.100}=60\\ AC=\sqrt{HC.BC}=\sqrt{64.100}=80\)
Ta có: AH ⊥ BC ⇒ HB = HC = BC/2 = 24/2 = 12(cm)
Áp dụng định lí Pitago vào tam giác vuông ACH ta có:
A C 2 = A H 2 + H C 2
Suy ra: A H 2 = A C 2 - H C 2 = 20 2 - 12 2 = 400 - 144 = 256
AH = 16 (cm)
Tam giác ACD vuông tại C nên theo hệ thức liên hệ giữa cạnh góc vuông và hình chiếu, ta có:
A C 2 = AH.AD ⇒ AD = A C 2 /AH = 20 2 /16 = 25 (cm)
Vậy bán kính của đường tròn (O) là: R = AD/2 = 25/2 = 12,5 (cm)
a) Ta có: ΔABC cân tại A(gt)
mà AH là đường cao ứng với cạnh đáy BC(gt)
nên H là trung điểm của BC
Ta có: AB=AC(ΔABC cân tại A
nên A nằm trên đường trung trực của BC\(\left(1\right)\)
Ta có: HB=HC
nên H nằm trên đường trung trực của BC\(\left(2\right)\)
Ta có: OB=OC
nên O nằm trên đường trung trực của BC\(\left(3\right)\)
Từ \(\left(1\right),\left(2\right),\left(3\right)\) suy ra A,O,H thẳng hàng
hay A,O,H,D thẳng hàng
hay AD là đường kính của \(\left(O\right)\)
Xét \(\left(O\right)\) có \(\widehat{ACD}\) là góc nội tiếp chắn nửa đường tròn
nên \(\widehat{ACD}=90^0\)