Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(cosA=\dfrac{AB^2+AC^2-BC^2}{2AB.AC}=-\dfrac{1}{32}\)
\(\Rightarrow A\approx92^0\)
\(p=\dfrac{AB+AC+BC}{2}=\dfrac{31}{2}\)
\(S_{ABC}=\sqrt{p\left(p-AB\right)\left(p-AC\right)\left(p-BC\right)}\simeq40\)
\(r=\dfrac{S}{p}=\dfrac{80}{31}\)
Ta có công thức tính diện tích tam giác khi biết các cạnh của tam giác và bán kính đường tròn ngoại tiếp là:
\(S=\frac{abc}{4R}\); với R là bán kính đường tròn ngoại tiếp và; a, b, c lần lượt là các cạnh của tam giác.
Bài giải:
Ta có tam giác AB=AC =10 cm
Kẻ đường cao BH
=> BH= CH= 12:2 =6cm
Áp dụng định lí Pitago
=> AH^2 =AC^2-HC^2=10^2-6^2=64
=> AH = 8 cm
=> Diện tích tam giác ABC: S= AH.BC:2=48 (cm^2)
Mặt khác \(S=\frac{AB.AC.BC}{4R}\Rightarrow R=\frac{AB.AC.BC}{4S}=\frac{10.10.12}{4.48}=6,25\left(cm\right)\)
Vậy bán kính đường tròn ngoại tiếp bằng 6,25 cm.
Ta sẽ tính `S_[\triangle ABC]` trước
`p = [ AB + AC + BC ] / 2 = [ 14 + 10 + 8 ] / 2 = 16`
`=> S_[\triangle ABC] = \sqrt{p ( p - AB ) ( p - AC ) ( p - BC ) } = 16\sqrt{6}`
Ta có: `S_[\triangle ABC] = [ AB . AC . BC ] / [ 4R]`
`=> R = [35\sqrt{6}] / 12`