K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

vecto AH: x+7y+19=0

=>BC có vtcp là (1;7)

=>VTPT là (-7;1)

Phương trình BC là;

-7(x+3)+1(y-2)=0

=>-7x-21+y-2=0

=>-7x+y-23=0

 

NV
11 tháng 4 2022

Con số diện tích lớn quá

\(\overrightarrow{CB}=\left(3;-4\right)\Rightarrow BC=\sqrt{3^2+\left(-4\right)^2}=5\)

\(S=\dfrac{1}{2}d\left(A;BC\right).BC=45\Rightarrow d\left(A;BC\right)=18\)

Theo tính chất trọng tâm, \(d\left(G;BC\right)=\dfrac{2}{3}d\left(A;BC\right)=12\)

Phương trình BC: \(4\left(x-2\right)+3\left(y-1\right)=0\Leftrightarrow4x+3y-11=0\)

Do G thuộc \(x-3y+1=0\Rightarrow\) tọa độ G có dạng: \(G\left(3g-1;g\right)\)

\(d\left(G;BC\right)=12\Rightarrow\dfrac{\left|4\left(3g-1\right)+3g-11\right|}{\sqrt{4^2+3^2}}=12\)

\(\Rightarrow\left|g-1\right|=4\Rightarrow\left[{}\begin{matrix}g=5\\g=-3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}G\left(14;5\right)\\G\left(-10;-3\right)\end{matrix}\right.\)

Áp dụng công thức trọng tâm \(\Rightarrow\left[{}\begin{matrix}A\left(41;9\right)\\A\left(-31;-15\right)\end{matrix}\right.\)

13 tháng 12 2017

Ta có, AB và AC cắt nhau tại A nên tọa độ đỉnh A là nghiệm của hệ phương trình :

x − 3 y − 1 = 0 5 x − 2 y + 1 = 0 ⇒ A − 5 13 ; − 6 13

Đường thẳng BC có VTPT n B C →    ( 1 ; 3 ) .

 Vì A H ​ ⊥ B C ​  nên đường thẳng AH nhận vecto n B C →    ( 1 ; 3 ) làm VTCP, một VTPT của AH là:  n A H → (    3 ;    − 1 )

Phương trình đường cao AH của tam giác là:

3 x + 5 13 − y + 6 13 = 0 ⇔ 39 x − 13 y + 9 = 0

ĐÁP ÁN B

NV
21 tháng 3 2021

Tọa độ B là nghiệm: \(\left\{{}\begin{matrix}x+y+1=0\\x-2y-2=0\end{matrix}\right.\) \(\Rightarrow B\left(0;-1\right)\)

Gọi vtpt của đường thẳng CM (cũng là đường cao kẻ từ C) có tọa độ \(\left(a;b\right)\)

H là chân đường cao kẻ từ B

\(cos\widehat{HBC}=\dfrac{\left|1.1+1.\left(-2\right)\right|}{\sqrt{1^2+1^2}.\sqrt{1^2+\left(-2\right)^2}}=\dfrac{1}{\sqrt{10}}\)

\(\Rightarrow cos\widehat{MCB}=cos\widehat{HBC}=\dfrac{1}{\sqrt{10}}=\dfrac{\left|a+b\right|}{\sqrt{a^2+b^2}.\sqrt{1^2+1^2}}\)

\(\Leftrightarrow\sqrt{a^2+b^2}=\sqrt{5}\left|a+b\right|\Leftrightarrow a^2+b^2=5\left(a+b\right)^2\)

\(\Leftrightarrow2a^2+5ab+2b^2=0\Leftrightarrow\left(a+2b\right)\left(2a+b\right)=0\)

Chọn \(\left(a;b\right)=\left[{}\begin{matrix}\left(2;-1\right)\\\left(1;-2\right)\end{matrix}\right.\) (trường hợp (1;-2) loại do song song BH)

\(\Rightarrow\) Phương trình đường cao kẻ từ C:

\(2\left(x-2\right)-1\left(y-1\right)=0\Leftrightarrow2x-y-3=0\)

Tọa độ C là nghiệm: \(\left\{{}\begin{matrix}x+y+1=0\\2x-y-3=0\end{matrix}\right.\) \(\Rightarrow C\left(...\right)\)

Gọi N là trung điểm BC \(\Rightarrow\) tọa độ N

Tam giác ABC cân tại A \(\Rightarrow\) AN là trung tuyến đồng thời là đường cao

\(\Rightarrow\) Đường thẳng AN vuông góc BC \(\Rightarrow\) nhận (1;-1) là 1 vtpt và đi qua N

\(\Rightarrow\) Phương trình AN

Đường thẳng AB vuông góc CM nên nhận (1;2) là 1 vtpt

\(\Rightarrow\) Phương trình AB (đi qua B và biết vtpt)

\(\Rightarrow\) Tọa độ A là giao điểm AB và AN