K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

22 tháng 8 2021

a) Xét tam giác ABC có:

\(AC^2+BC^2=225+64=289=AB^2\)

Nên tam giác ABC vuông tại A.

b) Áp dụng hệ thức về cạnh và đường cao trong tam giác vuông, ta được:

\(CK=\dfrac{AC\cdot BC}{AB}=\dfrac{15\cdot8}{17}=\dfrac{120}{17}\left(cm\right)\\BK=\dfrac{BC^2}{AB}=\dfrac{64}{17}\left(cm\right)\)

Áp dụng hệ thức về cạnh và góc trong tam giác vuông, ta được:

\(\sin B=\dfrac{CK}{BC}=\dfrac{15}{17}\\ \Rightarrow\widehat{B}\approx62^0\)

\(\sin C=\dfrac{BK}{BC}=\dfrac{8}{17}\\ \Rightarrow\widehat{C}\approx28^0\)

a: Xét ΔABC có \(AB^2=AC^2+BC^2\)

nên ΔBAC vuông tại C

9 tháng 10 2021

\(a,\) Vì \(10^2=6^2+8^2\Leftrightarrow BC^2=AB^2+AC^2\) nên tg ABC vg tại A (PTG đảo)

\(b,\) Áp dụng HTL:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH^2=BH\cdot HC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=3,6\left(cm\right)\\CH=\dfrac{AC^2}{BC}=6,4\left(cm\right)\\AH=\sqrt{3,6\cdot6,4}=4,8\left(cm\right)\end{matrix}\right.\)

\(c,\dfrac{AD}{DC}=\dfrac{AB}{BC}=\dfrac{3}{5}\left(t/c.đường.p/g\right)\\ \Rightarrow AD=\dfrac{3}{5}DC\)

Mà \(AD+DC=AC=8\)

\(\Rightarrow\dfrac{8}{5}DC=8\Rightarrow DC=5\left(cm\right)\\ \Rightarrow AD=3\left(cm\right)\)

\(\Rightarrow S_{ABD}=\dfrac{1}{2}AB\cdot AD=\dfrac{1}{2}\cdot6\cdot3=9\left(cm^2\right)\)

\(\Rightarrow S_{BCD}=S_{ABC}-S_{ADB}=\dfrac{1}{2}AB\cdot AC-9=24-9=15\left(cm^2\right)\)