Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
AC2 = AB2 + BC2 - 2.AB.BC.cos(60)
⇒ AC2 = 27
⇒ AC = 3\(\sqrt{3}\)
\(\dfrac{AB}{sinC}=\dfrac{AC}{sinB}=\dfrac{BC}{sinA}\)
⇒ \(\dfrac{3}{sinC}=\dfrac{6}{sinA}=\dfrac{3\sqrt{3}}{sin60}\)
⇒ \(\left\{{}\begin{matrix}sinA=1\\sinC=\dfrac{1}{2}\end{matrix}\right.\)
Vậy \(\widehat{A}=90^0;\widehat{C}=30^0\)
\(a,AC=\sqrt{\left(4-7\right)^2+\left(6-\dfrac{3}{2}\right)^2}=\sqrt{9+\dfrac{81}{4}}=\dfrac{3\sqrt{13}}{2}\\ AB=\sqrt{\left(4-1\right)^2+\left(6-4\right)^2}=\sqrt{9+4}=\sqrt{13}\\ BC=\sqrt{\left(1-7\right)^2+\left(4-\dfrac{3}{2}\right)^2}=\sqrt{36+\dfrac{25}{4}}=\dfrac{13}{2}\)
a, Theo định lí cosin:
\(BC^2=AB^2+AC^2-2AB.AC.cosA\)
\(\Leftrightarrow25=AB^2+36-2AB.6.cos30^o\)
\(\Leftrightarrow AB^2-AB.6\sqrt{3}+11=0\)
\(\Leftrightarrow AB=4\pm3\sqrt{3}\)
b, Theo định lí cosin:
\(AB^2=BC^2+AC^2-2BC.AC.cosC\)
\(\Leftrightarrow9=64+AC^2-16.AC.cos30^o\)
\(\Leftrightarrow AC^2-8\sqrt{3}AC+55=0\)
\(\Leftrightarrow AC^2-8\sqrt{3}AC+55=0\)
\(\Rightarrow\) vô nghiệm
\(\Rightarrow\) Không tồn tại tam giác ABC thỏa mãn
Đề có lỗi không
a, ( Không hiểu câu hỏi lắm :vvv)
\(AB.AC=5.8=40\left(cm\right)\)
b, - AD định lý cos : \(BC^2=AB^2+AC^2-2AB.AC.CosA\)
\(\Rightarrow49=25+64-2.5.8.CosA\)
\(\Rightarrow CosA=\dfrac{1}{2}\)
\(\Rightarrow\widehat{A}=60^o\)
Vậy ...
Áp dụng định lý hàm cosin:
\(AC=\sqrt{AB^2+BC^2-2AB.BC.cosB}=\sqrt{2^2+3^2-2.2.3.cos60^0}=\sqrt{2}\)
Diện tích tam giác:
\(S=\dfrac{1}{2}AB.BC.sinB=\dfrac{1}{2}.2.3.sin60^0=\dfrac{3\sqrt{3}}{2}\)