Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ dàng chỉ ra được các kết luận trên nhờ quan hệ giữa góc và cạnh đối diện trong tam giác.
Ta có :
a) AM = BC/2 = BM
Vậy tam giác ABM cân tại M. Vậy thì \(\widehat{B}=\widehat{A_1}\)
Tương tự \(\widehat{B}=\widehat{A_2}\Rightarrow\widehat{A}=\widehat{A_1}+\widehat{A_2}=\widehat{B}+\widehat{C}\)
Mà \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\Rightarrow\widehat{A}=90^o\)
b) AM > BM thì \(\widehat{B}>\widehat{A_1};\widehat{C}>\widehat{A_2}\),
\(\Rightarrow\widehat{B}+\widehat{C}>\widehat{A}\) , mà \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\Rightarrow\widehat{A}< 90^o\)
c) AM < BM thì \(\widehat{B}< \widehat{A_1};\widehat{C}< \widehat{A_2}\),
\(\Rightarrow\widehat{B}+\widehat{C}< \widehat{A}\) , mà \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\Rightarrow\widehat{A}>90^o\)
a) Ke AD sao cho goc DAB =goc ACD => goc DAB =goc BAD ( cung phu voi DAC)
=> tam giac ABD can tai D => AD=BD
=>Tam giac ADC can tai D => AD=DC
=>DB=DC=DA => D trung voi M
=> AM =BC/2
b) Nguoc lai :
Neu AM =BC/2 => AM =MB =MC
=> ABM can tai M ; ACM can tai M
=> BAM + CAM = (180- AMB)/2 +(180-AMC)/2 = (360 -(AMB+AMC))/2 =(360-180)/2=180/2=90
=>BAC=90
=> A=90
a: AM=1/2BC nên AM=BM=CM
Xét ΔMAB có MA=MB
nên ΔMAB cân tại M
=>\(\widehat{MAB}=\widehat{B}\)
Xét ΔMAC có MA=MC
nên ΔMAC cân tại M
hay \(\widehat{MAC}=\widehat{C}\)
Xét ΔABC có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
\(\Leftrightarrow\widehat{MAB}+\widehat{B}+\widehat{MAC}+\widehat{C}=180^0\)
=>\(\widehat{A}=90^0\)
b: Trên tia đối của tia MA, lấy điểm D sao cho MA=MD
Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
Do đó:ABDC là hình bình hành
mà \(\widehat{BAC}=90^0\)
nên ABDC là hình chữ nhật
Suy ra: AD=BC
=>AM=1/2BC