K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2019

A B O C H M E I P

a) Ta thấy ^AMB chắn nửa đường tròn (O) đường kính AB nên ^AMB = 900

Khi đó tứ giác EHBM có ^EMB + ^EHB = 900 + 900 = 1800 => Tứ giác EHBM nội tiếp (đpcm).

b) Tương tự câu a thì ^ACB = 900 => \(\Delta\)ABC vuông tại C có đường cao CH

=> AC2 = AH.AB (Hệ thức lượng trong tam giác vuông) (đpcm).

Có ^ACE = ^ACH = ^ABC (Cùng phụ ^BCH) = ^AMC (2 góc nội tiếp cùng chắn cung AC)

Xét \(\Delta\)AEC và \(\Delta\)ACM: ^ACE = ^AMC (cmt), ^CAE = ^MAC (góc chung)

=> \(\Delta\)AEC ~ \(\Delta\)ACM (g.g) => \(\frac{AC}{AM}=\frac{CE}{MC}\)=> AC.MC = AM.CE (đpcm).

c) Gọi I là tâm ngoại tiếp của \(\Delta\)CEM. Trước hết ta chỉ ra điểm I thuộc đường thẳng BC.

Thật vậy: Vì (I) ngoại tiếp \(\Delta\)CEM nên \(\Delta\)EIC cân tại I

=> ^ICE = 900 - ^EIC/2 = 900 - ^EMC = 900 - ^ABC = ^HCB = ^ECB

Do I,B nằm cùng phía so với CE nên hai tia CI,CB trùng nhau hay B,I,C thẳng hàng

Khi đó điểm I di chuyển trên đường thẳng BC. Gọi HP vuông góc BC tại P

Vì khoảng cách từ H đến I là IH nên HI < HP. Do C,B,H cố định nên HP không đổi

Vậy Max IH = HP = const.

Cách dựng điểm M thỏa mãn đề:

M A B C H O I E 0

B1: Dựng HI vuông góc với BC tại I

B2: Vẽ đường tròn tâm I bán kính IC cắt (O) và CH lần lượt tại M0 và E

Lúc này, I là tâm ngoại tiếp của tam giác CEM và M0 là điểm M cần tìm.

7 tháng 6 2019

Sửa: IH > HP và Min IH = PH = const. Mình nhầm dấu chút xíu :D 

22 tháng 6 2021

1) Vì AB là đường kính \(\Rightarrow\angle AMB=90\)

\(\Rightarrow\angle EHB+\angle EMB=90+90=180\Rightarrow EMBH\); nội tiếp

b) Vì AB là đường kính \(\Rightarrow\angle ACB=90\)

\(\Rightarrow\Delta ACB\) vuông tại C có \(CH\bot AB\Rightarrow AC^2=AH.AB\) (hệ thức lượng)

Xét \(\Delta AEH\) và \(\Delta ABM:\) Ta có: \(\left\{{}\begin{matrix}\angle AHE=\angle AMB=90\\\angle MABchung\end{matrix}\right.\)

\(\Rightarrow\Delta AEH\sim\Delta ABM\left(g-g\right)\Rightarrow\dfrac{AE}{AB}=\dfrac{AH}{AM}\Rightarrow AE.AM=AH.AB\)

\(\Rightarrow AE.AM=AC^2\Rightarrow\dfrac{AE}{AC}=\dfrac{AC}{AM}\)

Xét \(\Delta ACE\) và \(\Delta AMC:\) Ta có: \(\left\{{}\begin{matrix}\dfrac{AE}{AC}=\dfrac{AC}{AM}\\\angle MACchung\end{matrix}\right.\)

\(\Rightarrow\Delta ACE\sim\Delta AMC\left(c-g-c\right)\Rightarrow\dfrac{AE}{AC}=\dfrac{CE}{CM}\Rightarrow AE.CM=AC.EC\)

undefined

1 tháng 6 2016

Sorry!!Mình mới học lớp 4 thôi à.

1 tháng 6 2016

Mk chịu.Mk ms hk lớp 7

30 tháng 6 2021

tứ giác AIMK có

góc AIM = góc AKM = 90 độ

suy ra AIMK là tứ giác nội tiếp

1) Cho đường tròn (O) đường kính AB = 2R. Lấy điểm C di động trên đường tròn (O), gọi I là tâm đường tròn nội tiếp tam giác ABC, vẽ CH vuông góc AB tại H. a) Vẽ CM song song BI ( M thuôc đường thẳng AI). Trên đoạn thẳng AB lấy điểm F sao cho AC = AF. Tính số đo góc CMF.b) Gọi K là tâm đường tròn nội tiếp tam giác CHA, CK cắt AB tại E. Tính giá trị lớn nhất của diện tích tam giác CEF theo R khi C...
Đọc tiếp

1) Cho đường tròn (O) đường kính AB = 2R. Lấy điểm C di động trên đường tròn (O), gọi I là tâm đường tròn nội tiếp tam giác ABC, vẽ CH vuông góc AB tại H. 

a) Vẽ CM song song BI ( M thuôc đường thẳng AI). Trên đoạn thẳng AB lấy điểm F sao cho AC = AF. Tính số đo góc CMF.

b) Gọi K là tâm đường tròn nội tiếp tam giác CHA, CK cắt AB tại E. Tính giá trị lớn nhất của diện tích tam giác CEF theo R khi C di động trên (O). 

c) Chứng minh ba đường thẳng MH, CF và BI đồng qui tại một điểm.

2) Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O;R). Gọi M là điểm di động trên cung nhỏ BC. Vẽ AD vuông góc với MB tại D, AE vuông góc với MC tại E. Gọi H là giao điểm của DE và BC. 

a) Chứng minh A, H,E cùng thuộc một đường tròn. Từ đó suy ra DE luôn đi qua một điểm cố định. 

b) Xác định vị trí của M để MB/AD×MC/AE đạt giá trị lớn nhất.

Mọi người giúp em với ạ.

0
BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp BÀI 3 :Cho hai đoạn...
Đọc tiếp

BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp 

BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp 

BÀI 3 :Cho hai đoạn thẳng MN và PQ cắt nhau tại O .Biết OM.ON= PO.OQ.Chứng minh tứ giác MNPQ nội tiếp 

BÀI 4: Cho tam giác ABC có đường cao AH . Gọi M, N lần lượt là hình chiếu vuông góc của H lên các cạnh AB, AC 
a) c/m AMHN nội tiếp
b) BMNC nội tiếp 

BÀI 5: Cho tam giác ABC các đường phân giác trong là BE và CF cắt nhau tại M và các đường phân giác ngoài của các góc B và góc C cắt nhau tại N .chứng minh BMCN nội tiếp

BÀI 6: Cho đường tròn (O) đường kính AB .Gọi M là một điểm trên tiếp tuyến xBy , đường thẳng AM cắt đường tròn (O) tại C , lấy D thuộc BM, nối AD cắt (O) tại I. c/m CIDM nội tiếp

BÀI 7: Cho đường tròn tâm (O) có cung EH và S là điểm chính giữa cung đó .Trên dây EH lấy hai điểm A và B .Các đường thẳng SA và SB cắt đường tròn lần lượt tại D và C .c/m ABCD là tứ giác nội tiếp

BÀI 8: Cho đường tròn (O) đường kính AB , từ A và B vẽ Ax vuông góc AB và By vuông góc BA (Ax và By cùng phía so với bờ AB ) .Vẽ tiếp tuyến x'My' (tiếp điểm M) cắt Ax tại C và By tại D ; OC cắt AM tại I và OD cắt BM tại K .Chứng minh CIKD nội tiếp

0
23 tháng 4 2018

a, HS tự chứng minh

b, HS tự chứng minh

c, DAEH vuông nên ta có: KE = KA = 1 2 AH

=> DAKE cân tại K

=>  K A E ^ = K E A ^

DEOC cân  ở O =>  O C E ^ = O E C ^

H là trực tâm => AH  ^ BC

Có  A E K ^ + O E C ^ = H A C ^ + A C O ^ = 90 0

(K tâm ngoại tiếp) => OE ^ KE

d, HS tự làm

8 tháng 4 2020

Chỉ mình đi mọi người