K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ΔABC vuông tại A nên O là trung điểm của BC

Xét ΔCAB có CF/CA=CO/CB

nên FO//AB

=>FO vuông góc AC

góc AHO+góc AFO=180 độ

=>AHOF nội tiếp đường tròn đường kính AO

=>I là trung điểm  của AO

b: (O) và (I) đều đi qua A

OI=OA-IA=R-r'

=>(O) tiếp xúc (I) tại A

8 tháng 5 2023

loading...

`a)` Ta có: `\hat{AHI}=\hat{AKI}=90^o`

   `=>` Tứ giác `AHIK` nội tiếp đường tròn đường kính `AI`

`b)` Ta có: `\hat{COB}=2\hat{CAB}` (cùng chắn cung `BC`)

  `=>\hat{COB}=2.60^o =120^o=[2\pi]/3(rad)`

`=>` Độ dài cung `BC` nhỏ là: `l=\hat{COB}.R=[2\pi R]/3`

  `=>` Diện tích hình quạt giới hạn bởi `2` bán kính `OB;OC` và cung nhỏ `BC` là:

           `S=[lR]/2=[R^2]/3`

a: góc AHI=góc AKI=90 độ

=>AHIK nội tiếp

b: góc BOC=2*60=120 độ

\(S_{quạtBC}=pi\cdot R^2\cdot\dfrac{120}{360}=\dfrac{1}{3}\cdot pi\cdot R^2\)

18 tháng 8 2018

minh moi bn vao link nay dang ky roi tra loi minigame nha : https://alfazi.edu.vn/question/5b7768199c9d707fe5722878

19 tháng 8 2018

A B C O D E I

Gọi tiếp điểm của đường tròn (I) với AB và (O;R) theo thứ tự là D và E.

Đường tròn (I) tiếp xúc trong với (O;R) tại E nên 4 điểm A;O;I;E thẳng hàng.

Ta có: AO là phân giác của ^BAC (Do \(\Delta\)ABC đều nội tiếp (O))

=> AI là phân giác ^BAC => ^DAI = ^BAC / 2 = 300 

AB tiếp xúc với (I) tại D => ^ADI = 900

Xét \(\Delta\)AID có: ^ADI = 900; ^DAI = 300 => \(\Delta\)AID nửa đều \(\Rightarrow\frac{ID}{AI}=\frac{1}{2}\)

Hay \(\frac{IE}{AI}=\frac{1}{2}\Rightarrow\frac{IE}{AE}=\frac{1}{3}\)(Do A;I;E thẳng hàng) \(\Rightarrow IE=ID=\frac{2R}{3}\)

Thấy ^ABE chắn nửa đg tròn (O;R) => ^ABE = 900 => BE vuông góc AB. Mà ID vuông góc AB

=> ID // BE => \(\frac{IE}{AE}=\frac{BD}{AB}=\frac{1}{3}\)(Theo ĐL Thales)

Áp dụng ĐL Pytagorean ta dễ dàng tính được: \(AB=R.\sqrt{3}\)\(\Rightarrow BD=\frac{AB}{3}=\frac{R}{\sqrt{3}}\)

Trong \(\Delta\)BDI có ^IDB = 900 . Áp dụng ĐL Pytagorean:

\(IB=\sqrt{BD^2+ID^2}=\sqrt{\frac{R^2}{3}+\frac{4R^2}{9}}=\sqrt{\frac{7R^2}{9}}=\frac{R.\sqrt{7}}{3}\)

ĐS: .....

Bài 1:Cho tam giác ABC vuông ở A, đường cao AH. Đường tròn tâm O đường kính AH cắt các cạnh AB, AC lần lượt tại M và N (A # M&N). Gọi I, P và Q lần lượt là trung điểm các đoạn thẳng OH, BH, và CH. Chứng minh:a) Góc AHN = ACBb) Tứ giác BMNC nội tiếp.c) Điểm I là trực tâm tam giác APQ.Bài 2:Cho đường tròn (O;R) đường kính AB.Gọi C là điểm bất kỳ thuộc đường tròn đó (C # A&B). M, N lần lượt là...
Đọc tiếp

Bài 1:

Cho tam giác ABC vuông ở A, đường cao AH. Đường tròn tâm O đường kính AH cắt các cạnh AB, AC lần lượt tại M và N (A # M&N). Gọi I, P và Q lần lượt là trung điểm các đoạn thẳng OH, BH, và CH. Chứng minh:

a) Góc AHN = ACB

b) Tứ giác BMNC nội tiếp.

c) Điểm I là trực tâm tam giác APQ.

Bài 2:

Cho đường tròn (O;R) đường kính AB.Gọi C là điểm bất kỳ thuộc đường tròn đó (C # A&B). M, N lần lượt là điểm chính giữa của các cung nhỏ AC và BC. Các đường thẳng BN và AC cắt nhau tại I, các dây cung AN và BC cắt nhau ở P. Chứng minh:

a) Tứ giác ICPN nội tiếp. Xác định tâm K của đường tròn ngoại tiếp tứ giác đó.

b) KN là tiếp tuyến của đường tròn (O; R).

c) Chứng minh rằng khi C di động trên đường tròn (O;R) thì đường thẳng MN luôn tiếp xúc với một đường tròn cố định.

 

0