Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/Áp dụng định lí Pytago và tam giác ABC vuông tại A:
BC2=AB2+AC2
=>AC2=BC2-AB2=102-62=100-36=64
=> AC=\(\sqrt{64}=8cm\)
b/ Xét tam giác ABC và tam giác ADC có:
AC chung
góc BAC=DAC=90 độ
AD=AB(gt)
=> Tam giác ABC=tam giác ADC(c-g-c)
Dễ thôi mà, góc B và góc E cùng nhìn chung 1 cung là cung AD => góc B = góc E. Mà góc ABD = 90 độ => góc AED cũng = 90 độ
a: Xét tứ giác ABEC có
M là trung điểm của AE
M là trung điểm của BC
Do đó: ABEC là hình bình hành
mà \(\widehat{CAB}=90^0\)
nên ABEC là hình chữ nhật
Suy ra: CD⊥AC
b: Xét ΔCAE có
CH là đường cao
CH là đường trung tuyến
Do đó: ΔCAE cân tại C
c: Ta có: ΔCAE cân tại C
nên CA=CE
mà CA=BD
nên BD=CE
d: Xét ΔMAE có
MH là đường cao
MH là đường trung tuyến
Do đó: ΔMAE cân tại M
Xét ΔDEA có
EM là đường trung tuyến
EM=DA/2
Do đó: ΔDEA vuông tại E
hay AE⊥ED
hình tự vẽ
a)Vì AD là tpg của ^BAC
=>^BAD = ^CAD = ^BAC/2
Xét tam giác ABD và tam giác AED có:
AD:cạnh chung
^BAD=^CAD(cmt)
AB=AE(gt)
=>tam giác ABD=tam giác AED (c.g.c)
=>BD=BE (cặp cạnh t.ư)
b)Vì tam giác ABD=tam giác AED(cmt)
=>^ABD=^AED (cặp góc t.ư)
Ta có:^ABD+^KBD=1800 (kề bù)
=>^KBD=1800-^ABD (1)
^AED+^CED=1800 (kề bù)
=>^CED=1800-^AED(2)
Từ (1);(2);có ^ABD=^AED(cmt)
=>^KBD=^CED
Xét tam giác DBK và tam giác DEC có:
BD=BE(cmt
^KBD=^CED(cmt)
^BDK=^EDC (2 góc đđ)
=>tam giác DBK=tam giác DEC (g.c.g)
Từ tam giác DBK=tam giác DEC(cmt)
=>BK=EC (cặp cạnh t.ư)
Ta có: AB+BK=AK (B thuộc AK)
AE+EC=AC (E thuộc AC0
mà BK=EC(cmt);AB=AE(gt)
=>AK=AC
Xét tam giác AKC có:AK=AC(cmt)
=>tam giác AKC cân (ở A) (DHNB)
d)sai đề
b,
do OA=OC, OB=OC=> AB=CD
mặt khác, xét 2 tam giác BCO và tam giác ADO
BC=AD (từ câu a)
BO=DO
CO=AO
=`> tg OBC=ODA (c.c.c) => góc OBC= góc ODA (hai góc tương ứng
xét hai tam IBA và ICD
AB=CD
góc IBA=IDC
góc BIA=DIC(hai góc đối dỉnh)
=> tg IBA=IDC(g.c.g) => IB=ID, IC=IA (các cạp cạnh tương ứng)
c,
ta đã có tg OBC= tg ODA => góc BCO = góc DAO
xét hai tg AIO và CIO
OA=OC (gt)
IA=IC
góc BCO = góc DAO
=> tg AIO= tg CIO (c.g.c) => góc IOC = góc IOA (hai góc tương ứng ) => Oi là tia phân giác của AOC hay góc xOy
a: BC=13cm
b: Xét ΔABC có AB<AC<BC
nên \(\widehat{C}< \widehat{B}< \widehat{A}\)
c: Xét ΔNHA và ΔNIC có
NH=NI
\(\widehat{HNA}=\widehat{INC}\)
NA=NC
Do đó: ΔNHA=ΔNIC
Xét tg ABC và tg ADE có:
AD=AB(GT)
góc BAC=DAE(đối đỉnh)
AE=AC(GT)
\(\Rightarrow\) tg ABC=tg ADE(c-g-c)